login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Sum_{k=1..n} mu(k)/k.
6

%I #37 Nov 05 2023 11:01:23

%S 1,1,1,1,-1,2,-1,-1,-1,19,-1,-1,-2323,-89,304,304,163,163,-81988,

%T -81988,-15019,410857,-249979,-249979,-249979,4165258,4165258,4165258,

%U 9246047,-65721449,-4193929329,-4193929329,-6504197377,-302679716,2562470143

%N Numerator of Sum_{k=1..n} mu(k)/k.

%C Sum_{k>0} mu(k)/k = limit_{n->oo} A070888(n)/A070889(n) = 0. - _Jean-François Alcover_, Apr 18 2013. This is equivalent to the Prime Number Theorem! - _N. J. A. Sloane_, Feb 04 2022

%D Harold M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), p. 92.

%D Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, p. 568.

%H Amiram Eldar, <a href="/A070888/b070888.txt">Table of n, a(n) for n = 1..2376</a> (terms 1..1906 from Robert Israel)

%H F. K. Richter, <a href="https://arxiv.org/abs/2002.03255">A new elementary proof of the Prime Number Theorem</a>, arXiv preprint arXiv:2002.03255 [math.NT], 2020-2021.

%H Harold N. Shapiro, <a href="https://doi.org/10.1002/cpa.3160020208">Some assertions equivalent to the prime number theorem for arithmetic progressions</a>, Communications on Pure and Applied Mathematics 2.2‐3 (1949): 293-308.

%e a(6) = 2 because 1-1/2-1/3-1/5+1/6 = 4/30 = 2/15.

%p T:= 0:

%p for n from 1 to 100 do

%p T:= T + numtheory:-mobius(n)/n;

%p A[n]:= numer(T)

%p od:

%p seq(A[n],n=1..100); # _Robert Israel_, Aug 04 2014

%t Table[ Numerator[ Sum[ MoebiusMu[k]/k, {k, 1, n}]], {n, 1, 37}]

%o (PARI) t = 0; v = []; for( n = 1, 60, t= t + moebius( n) / n; v = concat( v, numerator( t))); v \\ adapted to latest PARI version by _Michel Marcus_, Aug 04 2014

%o (Python)

%o from functools import lru_cache

%o from sympy import harmonic

%o @lru_cache(maxsize=None)

%o def f(n):

%o if n <= 1:

%o return 1

%o c, j = 1, 2

%o k1 = n//j

%o while k1 > 1:

%o j2 = n//k1 + 1

%o c += (harmonic(j-1)-harmonic(j2-1))*f(k1)

%o j, k1 = j2, n//j2

%o return c+harmonic(j-1)-harmonic(n)

%o def A070888(n): return f(n).numerator # _Chai Wah Wu_, Nov 03 2023

%Y Cf. A008683, A068337, A070889 (denominators).

%K frac,sign

%O 1,6

%A _Donald S. McDonald_, May 17 2002

%E Edited by _Robert G. Wilson v_, Jun 10 2002