OFFSET
0,1
COMMENTS
It is an unsolved problem to determine if this sequence is bounded or unbounded.
REFERENCES
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198.
D. Gale, Tracking the Automatic Ant And Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16.
J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
FORMULA
The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.
MAPLE
G := proc(n) option remember; if n = 0 then 8 elif 4*G(n-1) mod 3 = 0 then 2*G(n-1)/3 else round(4*G(n-1)/3); fi; end; [ seq(G(i), i=0..80) ];
f:=proc(N) local n;
if N mod 3 = 0 then 2*(N/3);
elif N mod 3 = 2 then 4*((N+1)/3)-1; else
4*((N+2)/3)-3; fi; end; # N. J. A. Sloane, Feb 04 2011
MATHEMATICA
nxt[n_]:=Module[{m=Mod[n, 3]}, Which[m==0, (2n)/3, m==1, (4n-1)/3, True, (4n+1)/3]]; NestList[nxt, 8, 60] (* Harvey P. Dale, Dec 13 2013 *)
SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n-1)/3, _, (4n+1)/3 ] }, {8}, 60] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
PROG
(Haskell)
a028394 n = a028394_list !! n
a028394_list = iterate a006369 8 -- Reinhard Zumkeller, Dec 31 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved