The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028394 Iterate the map in A006369 starting at 8. 20
 8, 11, 15, 10, 13, 17, 23, 31, 41, 55, 73, 97, 129, 86, 115, 153, 102, 68, 91, 121, 161, 215, 287, 383, 511, 681, 454, 605, 807, 538, 717, 478, 637, 849, 566, 755, 1007, 1343, 1791, 1194, 796, 1061, 1415, 1887, 1258, 1677, 1118, 1491, 994, 1325, 1767, 1178 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS It is an unsolved problem to determine if this sequence is bounded or unbounded. REFERENCES J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198. D. Gale, Tracking the Automatic Ant And Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16. J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23. Index entries for sequences related to 3x+1 (or Collatz) problem FORMULA The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3. MAPLE G := proc(n) option remember; if n = 0 then 8 elif 4*G(n-1) mod 3 = 0 then 2*G(n-1)/3 else round(4*G(n-1)/3); fi; end; [ seq(G(i), i=0..80) ]; f:=proc(N) local n; if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end; # N. J. A. Sloane, Feb 04 2011 MATHEMATICA nxt[n_]:=Module[{m=Mod[n, 3]}, Which[m==0, (2n)/3, m==1, (4n-1)/3, True, (4n+1)/3]]; NestList[nxt, 8, 60] (* Harvey P. Dale, Dec 13 2013 *) SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n-1)/3, _, (4n+1)/3 ] }, {8}, 60] // Flatten (* Jean-François Alcover, Mar 01 2019 *) PROG (Haskell) a028394 n = a028394_list !! n a028394_list = iterate a006369 8 -- Reinhard Zumkeller, Dec 31 2011 CROSSREFS Cf. A006369, A028396, A094328, A094329, A185589, A185590. Trajectories under A006368 and A006369: A180853, A217218, A185590, A180864, A028393, A028394, A094328, A094329, A028396, A028395, A217729, A182205, A223083-A223088, A185589, A185590. Sequence in context: A279776 A101573 A029629 * A188199 A078117 A256073 Adjacent sequences: A028391 A028392 A028393 * A028395 A028396 A028397 KEYWORD nonn AUTHOR J. H. Conway STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 18:28 EDT 2024. Contains 371696 sequences. (Running on oeis4.)