login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180864 Trajectory of 13 under map n->A006368(n). 17
13, 10, 15, 11, 8, 12, 18, 27, 20, 30, 45, 34, 51, 38, 57, 43, 32, 48, 72, 108, 162, 243, 182, 273, 205, 154, 231, 173, 130, 195, 146, 219, 164, 246, 369, 277, 208, 312, 468, 702, 1053, 790, 1185, 889, 667, 500, 750, 1125, 844, 1266, 1899, 1424, 2136, 3204, 4806, 7209, 5407, 4055, 3041, 2281, 1711, 1283, 962 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Merges with the trajectory of 8 after four steps - see A028393.

It is a famous unsolved problem to show that this trajectory is unbounded.

REFERENCES

D. Gale, Tracking the Automatic Ant and Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16.

LINKS

Table of n, a(n) for n=0..62.

J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198.

Index entries for sequences related to 3x+1 (or Collatz) problem

FORMULA

a(n+1) = A006368(a(n)).

MATHEMATICA

b[n_] := If[EvenQ[n], 3n/2, Floor[(3n+2)/4]];

a[0] = 13; a[n_] := a[n] = b[a[n-1]];

Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Aug 01 2018 *)

SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {13}, 62] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

PROG

(Haskell)

a180864 n = a180864_list !! n

a180864_list = iterate a006368 13  -- Reinhard Zumkeller, Apr 18 2012

CROSSREFS

Cf. A006368, A028393, A028395, A028397.

Cf. A180853, A182205.

Sequence in context: A214025 A240812 A291425 * A206608 A094813 A152298

Adjacent sequences:  A180861 A180862 A180863 * A180865 A180866 A180867

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 03:00 EDT 2021. Contains 346457 sequences. (Running on oeis4.)