OFFSET
0,1
COMMENTS
It is conjectured that this trajectory never repeats, but no proof of this has been found. - N. J. A. Sloane, Jul 14 2009
REFERENCES
J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder, CO, 1972, pp. 49-52. - N. J. A. Sloane, Oct 04 2012
R. K. Guy, Unsolved Problems in Number Theory, E17. - N. J. A. Sloane, Oct 04 2012
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 5. [From N. J. A. Sloane, Jan 21 2011]
LINKS
Markus Sigg, Table of n, a(n) for n = 0..9999 (terms 0..1000 from T. D. Noe)
J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198.
D. Gale, Tracking the Automatic Ant And Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16. [From N. J. A. Sloane, Jul 14 2009]
FORMULA
a(n+1) = A006368(a(n)).
MAPLE
F := proc(n) option remember; if n = 0 then 8 elif 3*F(n-1) mod 2 = 0 then 3*F(n-1)/2 else round(3*F(n-1)/4); fi; end; [ seq(F(i), i=0..80) ];
MATHEMATICA
f[n_?EvenQ] := 3*n/2; f[n_] := Round[3*n/4]; a[0] = 8; a[n_] := a[n] = f[a[n - 1]]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Jun 10 2013 *)
PROG
(Haskell)
a028393 n = a028393_list !! n
a028393_list = iterate a006368 8 -- Reinhard Zumkeller, Apr 18 2012
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def F(n):
if n == 0: return 8
elif 3*F(n-1)%2 == 0: return 3*F(n-1)//2
else: return (3*F(n-1)+1)//4
print([F(i) for i in range(81)]) # Michael S. Branicky, Aug 12 2021 after J. H. Conway
CROSSREFS
KEYWORD
nonn,look
AUTHOR
STATUS
approved