login
A028393
Iterate the map in A006368 starting at 8.
20
8, 12, 18, 27, 20, 30, 45, 34, 51, 38, 57, 43, 32, 48, 72, 108, 162, 243, 182, 273, 205, 154, 231, 173, 130, 195, 146, 219, 164, 246, 369, 277, 208, 312, 468, 702, 1053, 790, 1185, 889, 667, 500, 750, 1125, 844, 1266, 1899, 1424, 2136, 3204, 4806, 7209, 5407
OFFSET
0,1
COMMENTS
It is conjectured that this trajectory never repeats, but no proof of this has been found. - N. J. A. Sloane, Jul 14 2009
REFERENCES
J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder, CO, 1972, pp. 49-52. - N. J. A. Sloane, Oct 04 2012
R. K. Guy, Unsolved Problems in Number Theory, E17. - N. J. A. Sloane, Oct 04 2012
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 5. [From N. J. A. Sloane, Jan 21 2011]
LINKS
Markus Sigg, Table of n, a(n) for n = 0..9999 (terms 0..1000 from T. D. Noe)
J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198.
D. Gale, Tracking the Automatic Ant And Other Mathematical Explorations, A Collection of Mathematical Entertainments Columns from The Mathematical Intelligencer, Springer, 1998; see p. 16. [From N. J. A. Sloane, Jul 14 2009]
FORMULA
a(n+1) = A006368(a(n)).
MAPLE
F := proc(n) option remember; if n = 0 then 8 elif 3*F(n-1) mod 2 = 0 then 3*F(n-1)/2 else round(3*F(n-1)/4); fi; end; [ seq(F(i), i=0..80) ];
MATHEMATICA
f[n_?EvenQ] := 3*n/2; f[n_] := Round[3*n/4]; a[0] = 8; a[n_] := a[n] = f[a[n - 1]]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Jun 10 2013 *)
PROG
(Haskell)
a028393 n = a028393_list !! n
a028393_list = iterate a006368 8 -- Reinhard Zumkeller, Apr 18 2012
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def F(n):
if n == 0: return 8
elif 3*F(n-1)%2 == 0: return 3*F(n-1)//2
else: return (3*F(n-1)+1)//4
print([F(i) for i in range(81)]) # Michael S. Branicky, Aug 12 2021 after J. H. Conway
KEYWORD
nonn,look
AUTHOR
STATUS
approved