The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094328 Iterate the map in A006369 starting at 4. 20
 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6, 4, 5, 7, 9, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 270. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23. Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 1). FORMULA The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3. Periodic with period length 5. a(n)=(1/50)*{51*(n mod 5)+61*[(n+1) mod 5]+11*[(n+2) mod 5]+11*[(n+3) mod 5]+21*[(n+4) mod 5]}, with n>=0 - Paolo P. Lava, Jun 26 2007 MATHEMATICA Table[{4, 5, 7, 9, 6}, {21}] // Flatten  (* Jean-François Alcover, Jun 10 2013 *) LinearRecurrence[{0, 0, 0, 0, 1}, {4, 5, 7, 9, 6}, 105] (* Ray Chandler, Sep 03 2015 *) PROG (Haskell) a094328 n = a094328_list !! (n-1) a094328_list = iterate a006369 4  -- Reinhard Zumkeller, Dec 31 2011 CROSSREFS Cf. A006368, A028394-A028397, A094329, A185589, A185590. Sequence in context: A140076 A135186 A011336 * A081095 A080596 A183866 Adjacent sequences:  A094325 A094326 A094327 * A094329 A094330 A094331 KEYWORD nonn AUTHOR N. J. A. Sloane, Jun 04 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 09:26 EST 2022. Contains 350454 sequences. (Running on oeis4.)