login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223083 Trajectory of 64 under the map n-> A006369(n). 15
64, 85, 113, 151, 201, 134, 179, 239, 319, 425, 567, 378, 252, 168, 112, 149, 199, 265, 353, 471, 314, 419, 559, 745, 993, 662, 883, 1177, 1569, 1046, 1395, 930, 620, 827, 1103, 1471, 1961, 2615, 3487, 4649, 6199, 8265, 5510, 7347, 4898, 6531, 4354, 5805 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It is conjectured that this trajectory does not close on itself.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198.

MAPLE

f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;

t1:=[64];

for n from 1 to 100 do t1:=[op(t1), f(t1[nops(t1)])]; od:

t1;

MATHEMATICA

t = {64}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)

SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, _, (4n + 1)/3]}, {64}, 60] // Flatten (* Jean-Fran├žois Alcover, Mar 01 2019 *)

CROSSREFS

Cf. A006369, A006368, A182205.

Trajectories under A006368 and A006369: A180853, A217218, A185590, A180864, A028393, A028394, A094328, A094329, A028396, A028395, A217729, A182205, A223083-A223088, A185589, A185590.

Sequence in context: A057442 A141817 A008435 * A302169 A302640 A302432

Adjacent sequences:  A223080 A223081 A223082 * A223084 A223085 A223086

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mar 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)