login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028391
a(n) = n - floor(sqrt(n)).
25
0, 0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65
OFFSET
0,4
COMMENTS
Number of nonsquares <= n.
Number of k <= n with an even number of divisors. - Benoit Cloitre, Sep 07 2002
Construct the pyramid
............a(0)
.......a(1).a(2).a(3)
..a(4).a(5).a(6).a(7).a(8).. etc.
Now circle all the primes and the result will be a pattern very similar to the famous Ulam spiral. - Sam Alexander, Nov 14 2003
The sequence floor(n-n^(1/2)) gives the same numbers with a different offset. - Mohammad K. Azarian, R. J. Mathar and M. F. Hasler, Apr 30 2008
The number of nonzero values of floor (j^2/n) taken over 1 <= j <= n-1.
a(n) = A173517(n) iff n is not a square. - Reinhard Zumkeller, Feb 20 2010
a(n) - a(n-1) = 0 if n is a square, otherwise 1. - Robert Israel, Dec 30 2014
REFERENCES
B. Alspach, K. Heinrich and G. Liu, Orthogonal factorizations of graphs, pp. 13-40 of Contemporary Design Theory, ed. J. H. Dinizt and D. R. Stinson, Wiley, 1992 (see Theorem 2.7).
LINKS
Dick Boland, Introduction to the Square Spine Spiral, 2000-2003 [broken link].
FORMULA
a(n) = ceiling(n - sqrt(n)), as follows from ceiling(-x) = -floor(x). [Corrected by M. F. Hasler, Feb 21 2010]
a(n) = 2*n - A028392(n). - Reinhard Zumkeller, Oct 28 2012
G.f.: (1+x)/(2*(1-x)^2) - Theta3(0,x)/(2*(1-x)) where Theta3 is a Jacobi theta function. - Robert Israel, Dec 30 2014
MAPLE
seq(n - floor(sqrt(n)), n = 0 .. 100); # Robert Israel, Dec 30 2014
MATHEMATICA
f[n_]:=n-Floor[Sqrt[n]]; Table[f[n], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2010 *)
PROG
(Haskell)
a028391 n = n - a000196 n -- Reinhard Zumkeller, Oct 28 2012
(PARI) a(n)=n-sqrtint(n) \\ Charles R Greathouse IV, Jun 28 2013
(Magma) [n-Floor(Sqrt(n)): n in [0..100]]; // Vincenzo Librandi Dec 31 2014
(Python)
from math import isqrt
def A028391(n): return n-isqrt(n) # Chai Wah Wu, Jul 28 2022
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
John Mellor (u15630(AT)snet.net)
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, May 01 2008
Comment and cross-reference added by Christopher Hunt Gribble, Oct 13 2009
Formula corrected by M. F. Hasler, Feb 21 2010
More terms from Vladimir Joseph Stephan Orlovsky, Mar 29 2010
STATUS
approved