The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028391 a(n) = n - floor(sqrt(n)). 20
 0, 0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of nonsquares <= n. Number of k <= n with an even number of divisors. - Benoit Cloitre, Sep 07 2002 Construct the pyramid ............a(0) .......a(1).a(2).a(3) ..a(4).a(5).a(6).a(7).a(8).. etc. Now circle all the primes and the result will be a pattern very similar to the famous Ulam spiral. - Sam Alexander, Nov 14 2003 The sequence floor(n-n^(1/2)) gives the same numbers with a different offset. - Mohammad K. Azarian, R. J. Mathar and M. F. Hasler, Apr 30 2008 The number of nonzero values of floor (j^2/n) taken over 1 <= j <= n-1. a(n) = A173517(n) iff n is not a square. - Reinhard Zumkeller, Feb 20 2010 a(n) - a(n-1) = 0 if n is a square, otherwise 1. - Robert Israel, Dec 30 2014 REFERENCES B. Alspach, K. Heinrich and G. Liu, Orthogonal factorizations of graphs, pp. 13-40 of Contemporary Design Theory, ed. J. H. Dinizt and D. R. Stinson, Wiley, 1992 (see Theorem 2.7). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Dick Boland, Introduction to the Square Spine Spiral, 2000-2003 [broken link]. FORMULA a(n) = ceiling(n - sqrt(n)), as follows from ceiling(-x) = -floor(x). [Corrected by M. F. Hasler, Feb 21 2010] a(n) = 2*n - A028392(n). - Reinhard Zumkeller, Oct 28 2012 G.f.: (1+x)/(2*(1-x)^2) - Theta3(0,x)/(2*(1-x)) where Theta3 is a Jacobi theta function. - Robert Israel, Dec 30 2014 MAPLE seq(n - floor(sqrt(n)), n = 0 .. 100); # Robert Israel, Dec 30 2014 MATHEMATICA f[n_]:=n-Floor[Sqrt[n]]; Table[f[n], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2010 *) PROG (Haskell) a028391 n = n - a000196 n  -- Reinhard Zumkeller, Oct 28 2012 (PARI) a(n)=n-sqrtint(n) \\ Charles R Greathouse IV, Jun 28 2013 (MAGMA) [n-Floor(Sqrt(n)): n in [0..100]]; // Vincenzo Librandi Dec 31 2014 CROSSREFS Cf. A056847, A000196, A135662-A135665, A166373. Sequence in context: A140859 A072586 A329548 * A038668 A251629 A279033 Adjacent sequences:  A028388 A028389 A028390 * A028392 A028393 A028394 KEYWORD nonn,easy,nice AUTHOR John Mellor (u15630(AT)snet.net) EXTENSIONS Edited by N. J. A. Sloane at the suggestion of R. J. Mathar, May 01 2008 Comment and cross-reference added by Christopher Hunt Gribble, Oct 13 2009 Formula corrected by M. F. Hasler, Feb 21 2010 More terms from Vladimir Joseph Stephan Orlovsky, Mar 29 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 18:00 EDT 2021. Contains 346488 sequences. (Running on oeis4.)