login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,1,1,1,2,1,1,3,3,2
Displaying 1-9 of 9 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A340274 Number of ways to write n as x + y + z with x, y, z positive integers such that 3*x^2*y^2 + 5*y^2*z^2 + 8*z^2*x^2 is a square. +30
5
0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 4, 2, 5, 2, 1, 2, 2, 2, 2, 4, 2, 4, 3, 3, 3, 4, 5, 2, 3, 5, 5, 4, 4, 2, 4, 4, 5, 3, 4, 3, 6, 3, 2, 5, 2, 2, 7, 7, 1, 3, 6, 4, 4, 3, 3, 6, 2, 5, 5, 3, 6, 5, 4, 6, 6, 6, 3, 6, 6, 4, 5, 6, 2, 6, 3, 5, 4, 5, 3, 5, 12, 4, 4, 5, 1, 6, 6, 7, 9, 3, 3, 6, 5, 6, 7, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,9
COMMENTS
Conjecture 1: a(n) > 0 for all n > 2.
We have verified a(n) > 0 for all n = 3..10000. The conjecture holds if a(p) > 0 for every odd prime p. For any n > 0 we have a(3*n) > 0, since 3*n = n + n + n and 3 + 5 + 8 = 4^2.
It seems that a(n) = 1 only for n = 3..8, 10, 11, 19, 53, 89, 127, 178, 257, 461.
See also A343862 for similar conjectures.
Conjecture 1 holds for all n < 2^15. Note a(1823) = 1. - Martin Ehrenstein, May 03 2021
LINKS
Martin Ehrenstein, Table of n, a(n) for n = 1..32767 (first 1500 terms from Zhi-Wei Sun)
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175 (2017), 167-190. See also arXiv version, arXiv:1604.06723 [math.NT], 2016-2017.
EXAMPLE
a(4) = 1 with 4 = 2 + 1 + 1 and 3*2^2*1^2 + 5*1^2*1^2 + 8*1^2*2^2 = 7^2.
a(19) = 1 with 19 = 9 + 9 + 1 and 3*9^2*9^2 + 5*9^2*1^2 + 8*1^2*9^2 = 144^2.
a(53) = 1 with 53 = 23 + 7 + 23 and 3*23^2*7^2 + 5*7^2*23^2 + 8*23^2*23^2 = 1564^2.
a(89) = 1 with 89 = 2 + 58 + 29 and 3*2^2*58^2 + 5*58^2*29^2 + 8*29^2*2^2 = 3770^2.
a(257) = 1 with 257 = 11 + 164 + 82 and 3*11^2*164^2 + 5*164^2*82^2 + 8*82^2*11^2 = 30340^2.
a(461) = 1 with 461 = 186 + 165 + 110 and 3*186^2*165^2 + 5*165^2*110^2 + 8*110^2*186^2 = 88440^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[3x^2*y^2+(n-x-y)^2*(5*y^2+8*x^2)], r=r+1], {x, 1, n-2}, {y, 1, n-1-x}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 24 2021
STATUS
approved
A099509 Triangle, read by rows, of trinomial coefficients arranged so that there are n+1 terms in row n by setting T(n,k) equal to the coefficient of z^k in (1 + z + z^2)^(n-[k/2]), for n>=k>=0, where [k/2] is the integer floor of k/2. +30
4
1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 6, 7, 1, 1, 5, 10, 16, 6, 3, 1, 6, 15, 30, 19, 16, 1, 1, 7, 21, 50, 45, 51, 10, 4, 1, 8, 28, 77, 90, 126, 45, 30, 1, 1, 9, 36, 112, 161, 266, 141, 126, 15, 5, 1, 10, 45, 156, 266, 504, 357, 393, 90, 50, 1, 1, 11, 55, 210, 414, 882, 784, 1016, 357 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Row sums form absolute values of A078039. In general if T(n,k) = coefficient of z^k in (a + b*z + c*z^2)^(n-[k/2]), then the resulting number triangle will have the o.g.f.: ((1-a*x-c*x^2*y^2) + b*x*y)/((1-a*x-c*x^2*y^2)^2 - x*(b*x*y)^2).
LINKS
FORMULA
G.f.: (1-x+x*y-x^2*y^2)/((1-x)^2-2*x^2*y^2+x^3*y^2+x^4*y^4).
EXAMPLE
Rows begin:
[1],
[1,1],
[1,2,1],
[1,3,3,2],
[1,4,6,7,1],
[1,5,10,16,6,3],
[1,6,15,30,19,16,1],
[1,7,21,50,45,51,10,4],
[1,8,28,77,90,126,45,30,1],
[1,9,36,112,161,266,141,126,15,5],...
and can be derived from coefficients of (1+z+z^2)^n:
[1],
[1,1,1],
[1,2,3,2,1],
[1,3,6,7,6,3,1],
[1,4,10,16,19,16,10,4,1],
[1,5,15,30,45,51,45,30,15,5,1],...
by shifting each column k down by [k/2] rows.
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, polcoeff((1+z+z^2+z*O(z^k))^(n-k\2), k, z))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 20 2004
STATUS
approved
A368343 Square array T(n,k), n >= 3, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * floor(j/3). +30
4
1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 7, 5, 2, 1, 5, 13, 16, 7, 2, 1, 6, 21, 41, 34, 9, 3, 1, 7, 31, 86, 125, 70, 12, 3, 1, 8, 43, 157, 346, 377, 143, 15, 3, 1, 9, 57, 260, 787, 1386, 1134, 289, 18, 4, 1, 10, 73, 401, 1562, 3937, 5547, 3405, 581, 22, 4 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
3,5
LINKS
FORMULA
T(n,k) = T(n-3,k) + Sum_{j=0..n-3} k^j.
T(n,k) = 1/(k-1) * Sum_{j=0..n} floor(k^j/(k^2+k+1)) = Sum_{j=0..n} floor(k^j/(k^3-1)) for k > 1.
T(n,k) = (k+1)*T(n-1,k) - k*T(n-2,k) + T(n-3,k) - (k+1)*T(n-4,k) + k*T(n-5,k).
G.f. of column k: x^3/((1-x) * (1-k*x) * (1-x^3)).
T(n,k) = 1/(k-1) * (floor(k^(n+1)/(k^3-1)) - floor((n+1)/3)) for k > 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 3, 7, 13, 21, 31, 43, ...
2, 5, 16, 41, 86, 157, 260, ...
2, 7, 34, 125, 346, 787, 1562, ...
2, 9, 70, 377, 1386, 3937, 9374, ...
3, 12, 143, 1134, 5547, 19688, 56247, ...
PROG
(PARI) T(n, k) = sum(j=0, n, k^(n-j)*(j\3));
CROSSREFS
Columns k=0..4 give A002264, A130518, A178455, A368344, A368345.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Dec 22 2023
STATUS
approved
A247749 Number T(n,k) of lattice paths from (0,0) to (n,0) that do not go below the x-axis or above the diagonal x=y, consist of steps u=(1,1), U=(1,3), H=(1,0), d=(1,-1) and D=(1,-3) for which the area below the path is k; triangle T(n,k), n>=0, read by rows. +30
3
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 2, 0, 1, 1, 4, 6, 6, 6, 3, 4, 2, 1, 1, 1, 5, 10, 13, 15, 12, 14, 15, 9, 12, 5, 5, 1, 1, 1, 6, 15, 24, 32, 33, 37, 46, 40, 43, 34, 28, 23, 16, 10, 5, 2, 1, 1, 7, 21, 40, 61, 75, 88, 114, 122, 134, 137, 118, 127, 101, 99, 69, 68, 41, 38, 19, 17, 5, 5, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
LINKS
FORMULA
Sum_{k>=0} T(n,k) = A240904(n).
Sum_{k>=1} k * T(n,k) = A247748(n).
EXAMPLE
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 1;
1, 3, 3, 2, 2, 0, 1;
1, 4, 6, 6, 6, 3, 4, 2, 1, 1;
1, 5, 10, 13, 15, 12, 14, 15, 9, 12, 5, 5, 1, 1;
1, 6, 15, 24, 32, 33, 37, 46, 40, 43, 34, 28, 23, 16, 10, 5, 2, 1;
MAPLE
b:= proc(x, y) option remember; `if`(y<0 or x<y, 0, `if`(x=0, 1,
expand(add(z^(y+j/2)*b(x-1, y+j), j=[-1, -3, 0, 1, 3]))))
end:
T:= n-> (p->seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..10);
MATHEMATICA
b[x_, y_] := b[x, y] = If[y < 0 || x < y, 0, If[x == 0, 1,
Expand[Sum[z^(y+j/2)*b[x-1, y+j], {j, {-1, -3, 0, 1, 3}}]]]];
T[n_] := CoefficientList[b[n, 0], z];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 23 2014
STATUS
approved
A034929 A triangle of Motzkin ballot numbers, read by rows. +30
1
1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 6, 6, 4, 1, 5, 10, 13, 13, 9, 1, 6, 15, 24, 30, 30, 21, 1, 7, 21, 40, 59, 72, 72, 51, 1, 8, 28, 62, 105, 148, 178, 178, 127, 1, 9, 36, 91, 174, 276, 378, 450, 450, 323, 1, 10, 45, 128, 273, 480, 730, 980, 1158, 1158, 835, 1, 11, 55, 174, 410, 791 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Mirror image of A091836. Row sums are the Motzkin numbers (A001006). T(n,n-1)=A001006(n-2) (the Motzkin numbers). T(n,n-2)=A005554(n-1).
REFERENCES
M. Aigner, Motzkin numbers, Europ. J. Comb. 19 (1998), 663-675.
LINKS
FORMULA
G.f.= 2(1+tz)/[1-2z+tz-2tz^2+sqrt(1-2tz-3t^2*z^2)].
EXAMPLE
Triangle begins:
[1],
[1, 1],
[1, 2, 1],
[1, 3, 3, 2],
[1, 4, 6, 6, 4],
[1, 5, 10, 13, 13, 9],
[1, 6, 15, 24, 30, 30, 21],
[1, 7, 21, 40, 59, 72, 72, 51]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by Emeric Deutsch, Mar 11 2004
STATUS
approved
A153859 Triangle read by rows, A007318 * (A007476 * 0 ^(n-k)) +30
1
1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 6, 8, 4, 1, 5, 10, 20, 20, 9, 1, 6, 15, 40, 60, 54, 23, 1, 7, 21, 70, 140, 189, 161, 65, 1, 8, 28, 112, 280, 504, 644, 520, 199, 1, 9, 36, 168, 504, 1134, 1932, 2340, 1791, 654, 1, 10, 45, 240, 840, 2268, 4830, 7800, 8955, 6540, 2296 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Row sums = A007476 starting (1, 2, 4, 9, 23, 65, 199,...).
LINKS
FORMULA
Triangle read by rows A007318 * (A007476 * 0^(n-k)) = binomial transform of an infinite lower triangular matrix with A007476 as the main diagonal: (1, 1, 1, 2, 4, 9, 23, 65, 199,...) and the rest zeros.
EXAMPLE
First few rows of the triangle =
1;
1, 1;
1, 2, 1;
1, 3, 3, 2;
1, 4, 6, 8, 4;
1, 5, 10, 20, 20, 9;
1, 6, 15, 40, 60, 54, 23;
1, 7, 21, 70, 140, 189, 161, 65;
1, 8, 28, 112, 280, 504, 644, 520, 199;
1, 9, 36, 168, 504, 1134, 1932, 2340, 1791, 654;
1, 10, 45, 240, 840, 2268, 4830, 7800, 8955, 6540, 2296;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 02 2009
STATUS
approved
A144401 Padovan ( A000931) version of A038137: expansion of polynomials as antidiagonal: p(x,n)=1/(1-x-x^3)^n. +30
0
1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 6, 6, 3, 1, 5, 10, 13, 11, 4, 1, 6, 15, 24, 27, 18, 6, 1, 7, 21, 40, 55, 51, 30, 9, 1, 8, 28, 62, 100, 116, 94, 50, 13, 1, 9, 36, 91, 168, 231, 234, 171, 81, 19, 1, 10, 45, 128, 266, 420, 505, 460, 303, 130, 28, 1, 11, 55, 174, 402, 714, 987, 1065 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Row sums are: 1, 2, 4, 9, 20, 44, 97, 214, 472, 1041, 2296, 5064, 11169, 24634, 54332 (cf. A008998).
These polynomials are sort of pseudo-combinations with the last element Padovan instead of one.
If you subtract the binomial triangle sequence you get:
{0},
{0, 0},
{0, 0, 0},
{0, 0, 0, 1},
{0, 0, 0, 2, 2},
{0, 0, 0, 3, 6, 3},
{0, 0, 0, 4, 12, 12, 5},
{0, 0, 0, 5, 20, 30, 23, 8},
{0, 0, 0, 6, 30, 60, 66, 42, 12}
LINKS
FORMULA
p(x,n)=1/(1-x-x^3)^n; t(n,m)=anti_diagonal_expansion(p(x,n)).
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 2},
{1, 4, 6, 6, 3},
{1, 5, 10, 13, 11, 4},
{1, 6, 15, 24, 27, 18, 6},
{1, 7, 21, 40, 55, 51, 30, 9},
{1, 8, 28, 62, 100, 116, 94, 50, 13},
{1, 9, 36, 91, 168, 231, 234, 171, 81, 19},
{1, 10, 45, 128, 266, 420, 505, 460, 303, 130, 28},
{1, 11, 55, 174, 402, 714, 987, 1065, 879, 527, 208, 41},
{1, 12, 66, 230, 585, 1152, 1792, 2220, 2175, 1640, 906, 330, 60},
{1, 13, 78, 297, 825, 1782, 3072, 4278, 4815, 4320, 3006, 1539, 520, 88},
{1, 14, 91, 376, 1133, 2662, 5028, 7752, 9807, 10122, 8391, 5424, 2586, 816, 129}
MATHEMATICA
Clear[f, b, a, g, h, n, t]; f[t_, n_] = 1/(1 - t - t^3)^n; a = Table[Table[SeriesCoefficient[Series[f[t, m], {t, 0, 30}], n], {n, 0, 30}], {m, 1, 31}]; b = Table[Table[a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}]; Flatten[b]
CROSSREFS
KEYWORD
nonn,tabl,uned
AUTHOR
STATUS
approved
A175424 a(n) is the number of steps of iterations of {(((D_k^D_(k-1))^D_(k-2))^...)^D_1, where D_k is the k-th digit D of number r and k is the number of digits of number r in decimal expansion of r (A055642)} needed to reach a single-digit number starting at r = n, or a(n) = -1 if a single-digit number is never reached. +20
7
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, -1, -1, 3, 3, 2, 1, 1, 1, 4, 3, -1, -1, 3, 3, 3, 1, 1, 2, 2, 3, 3, 3, 2, 2, 2, 1, 1, 2, 3, 2, 4, 3, 2, 3, 2, 1, 1, 3, 3, 2, 3, 3, 3, 3, 2, 1, 1, 4, 3, 3, 3, 3, 3, 2, 3, 1, 1, 3, 2, 3, 2, 3, 2, 2, 2, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,25
COMMENTS
Conjecture: max(a(n)) = 4.
LINKS
EXAMPLE
For n = 33: a(33) = 4 because for the number 33 there are 4 steps of defined iteration: {3^3 = 27}, {7^2 = 49}, {9^4 = 6561}, {((1^6)^5)^6 = 1}.
PROG
(PARI) f(n) = if (n, my(d=digits(n), r=d[#d]); if (!vecmin(d), return(0)); forstep (k=#d-1, 1, -1, r = r^d[k]; ); r); \\ A175420
findpos(n, list) = {forstep (k=#list, 1, -1, if (list[k] == n, return (k)); ); return (0); }
a(n) = {my(list = List(n), nb = 0); while (n >= 10, n = f(n); my(k=findpos(n, list)); nb++; if (k, if (k==#list-1, if (list[k]<10, return (nb), return(-1)), return(-1)); ); listput(list, n); ); return (nb); } \\ Michel Marcus, Jan 20 2022
CROSSREFS
KEYWORD
sign,base
AUTHOR
Jaroslav Krizek, May 09 2010
STATUS
approved
A363394 Triangle read by rows. T(n, k) = A081658(n, k) + A363393(n, k) for k > 0 and T(n, 0) = 1. +20
0
1, 1, 1, 1, 2, -1, 1, 3, -3, -2, 1, 4, -6, -8, 5, 1, 5, -10, -20, 25, 16, 1, 6, -15, -40, 75, 96, -61, 1, 7, -21, -70, 175, 336, -427, -272, 1, 8, -28, -112, 350, 896, -1708, -2176, 1385, 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
Richard P. Stanley, A survey of alternating permutations, arXiv:0912.4240 [math.CO], 2009.
FORMULA
|T(n, k)| = (-1)^(n - k) * n! * [x^(n - k)][y^n] (sec(y) + tan(y)) / exp(x*y).
T(n, k) = [x^(n - k)] -2^(k-(0^k))*(Euler(k, 0) + Euler(k, 1/2)) / (x-1)^(k + 1).
For a recursion see the Python program.
EXAMPLE
The triangle T(n, k) begins:
[0] 1;
[1] 1, 1;
[2] 1, 2, -1;
[3] 1, 3, -3, -2;
[4] 1, 4, -6, -8, 5;
[5] 1, 5, -10, -20, 25, 16;
[6] 1, 6, -15, -40, 75, 96, -61;
[7] 1, 7, -21, -70, 175, 336, -427, -272;
[8] 1, 8, -28, -112, 350, 896, -1708, -2176, 1385;
[9] 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936;
MAPLE
# Variant, computes abs(T(n, k)):
P := n -> n!*coeff(series((sec(y) + tan(y))/exp(x*y), y, 24), y, n):
seq(print(seq((-1)^(n - k)*coeff(P(n), x, n - k), k = 0..n)), n = 0..9);
PROG
(Python)
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k == 0: return 1
if k == n:
p = k % 2
return p - sum(T(n, j) for j in range(p, n - 1, 2))
return (T(n - 1, k) * n) // (n - k)
for n in range(10): print([T(n, k) for k in range(n + 1)])
CROSSREFS
Variants (row reversed): A109449, A247453.
Cf. A081658 (signed secant part), A363393 (signed tangent part), A000111 (main diagonal), A122045, A155585 (aerated main diagonal), A000667, A062162 (row sums of signless variant).
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jun 06 2023
STATUS
approved
page 1

Search completed in 0.007 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 17:47 EDT 2024. Contains 375017 sequences. (Running on oeis4.)