login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111006 Another version of Fibonacci-Pascal triangle A037027. 15
1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Row sums are the Jacobsthal numbers A001045(n+1) and column sums form Pell numbers A000129.

Maximal column entries: A038149 = {1, 1, 2, 5, 10, 22, ...}.

T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, ...).

Triangle read by rows: T(n,n-k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0<=k<=floor(n/2)). - Philippe Deléham, Feb 17 2014

Diagonal sums are A013979(n). - Philippe Deléham, Feb 17 2014

T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and 1 X 2 tiles. - Emeric Deutsch, Aug 14 2014

LINKS

Reinhard Zumkeller, Rows n = 0..120 of table, flattened

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(0, 0) = 1, T(n, k) = 0 for k<0 or for n<k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).

T(n, k) = A037027(k, n-k) . T(n, n) = A000045(n+1) . T(3n, 2n) = (n+1)*A001002(n+1) = A038112(n).

G.f.: 1/(1-yx(1-x)-x^2*y^2); - Paul Barry, Oct 04 2005

Sum_{0, 0<=k<=n} x^k*T(n,k)=(-1)^n*A053524(n+1), (-1)^n*A083858(n+1), (-1)^n*A002605(n), A033999(n), A000007(n), A001045(n+1), A083099(n)for x= -4, -3, -2, -1, 0, 1, 2 respectively . - Philippe Deléham, Dec 02 2006

Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 respectively. - Philippe Deléham, Feb 17 2014

EXAMPLE

Triangle begins:

.1;

.0, 1;

.0, 1, 2;

.0, 0, 2, 3;

.0, 0, 1, 5, 5;

.0, 0, 0, 3, 10, 8;

.0, 0, 0, 1, 9, 20, 13;

.0, 0, 0, 0, 4, 22, 38, 21;

.0, 0, 0, 0, 1, 14, 51, 71, 34;

.0, 0, 0, 0, 0, 5, 40, 111, 130, 55;

.0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89;

.0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144;

PROG

(Haskell)

a111006 n k = a111006_tabl !! n !! k

a111006_row n = a111006_tabl !! n

a111006_tabl =  map fst $ iterate (\(us, vs) ->

   (vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0, 0] ++ us))

                    ([0] ++ vs))) ([1], [0, 1])

-- Reinhard Zumkeller, Aug 15 2013

CROSSREFS

Cf. A000045, A000129, A001045, A037027, A038112, A038149, A084938, A128100 (reversed version).

Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Sequence in context: A122908 A296441 A091008 * A046742 A263138 A274637

Adjacent sequences:  A111003 A111004 A111005 * A111007 A111008 A111009

KEYWORD

easy,nonn,tabl

AUTHOR

Philippe Deléham, Oct 02 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 13:01 EDT 2018. Contains 316236 sequences. (Running on oeis4.)