login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083099 a(n) = 2*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1. 29
0, 1, 2, 10, 32, 124, 440, 1624, 5888, 21520, 78368, 285856, 1041920, 3798976, 13849472, 50492800, 184082432, 671121664, 2446737920, 8920205824, 32520839168, 118562913280, 432250861568, 1575879202816, 5745263575040 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n+1) = a(n) + A083098(n+1). A083098(n+1)/a(n) converges to sqrt(7).

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 7 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(7). - Cino Hilliard, Sep 25 2005

Pisano period lengths: 1, 1, 2, 1, 12, 2, 7, 1, 6, 12, 60, 2,168, 7, 12, 1,288, 6, 18, 12, ... - R. J. Mathar, Aug 10 2012

a(n) is divisible by 2^ceiling(n/2), see formula below. - Ralf Stephan, Dec 24 2013

REFERENCES

John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,6).

FORMULA

G.f.: x/(1-2*x-6*x^2).

From Paul Barry, Sep 29 2004: (Start)

E.g.f.: (d/dx)(exp(x)sinh(sqrt(7)x)/sqrt(7));

a(n-1) = Sum_{k=0..n} binomial(n, 2k+1)7^k. (End)

a(n) = -(1/14)*(1-sqrt(7))^n*sqrt(7)+(1/14)*(1+sqrt(7))^n*sqrt(7). - Paolo P. Lava, Jun 10 2008

Simplified formula: ((1+sqrt7)^n-(1-sqrt7)^n)/sqrt28. Offset 1. a(3)=10. - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

a(2n) = 2^n * A154245(n), a(2n+1) = 2^n * (5*A154245(n) - 9*A154245(n-1)). - Ralf Stephan, Dec 24 2013

a(n) = Sum_{k=1,3,5,...<=n} binomial(n,k)*7^((k-1)/2). - Vladimir Shevelev, Feb 06 2014

MAPLE

A083099 := proc(n)

    option remember;

    if n <= 1 then

        n;

    else

        2*procname(n-1)+6*procname(n-2) ;

    end if;

end proc: # R. J. Mathar, Sep 23 2016

MATHEMATICA

CoefficientList[Series[x/(1-2x-6x^2), {x, 0, 25}], x] (* Adapted for offset 0 by Vincenzo Librandi, Feb 07 2014 *)

Expand[Table[((1 + Sqrt[7])^n - (1 - Sqrt[7])^n)7/(14Sqrt[7]), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *)

LinearRecurrence[{2, 6}, {0, 1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)

PROG

(Sage) [lucas_number1(n, 2, -6) for n in xrange(0, 25)] # Zerinvary Lajos, Apr 22 2009

(PARI) a(n)=([0, 1; 6, 2]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, May 10 2016

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-2*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018

(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018

CROSSREFS

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Sequence in context: A034555 A084154 A265836 * A032095 A264960 A151019

Adjacent sequences:  A083096 A083097 A083098 * A083100 A083101 A083102

KEYWORD

nonn,easy

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 17:10 EDT 2018. Contains 316427 sequences. (Running on oeis4.)