This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015442 Generalized Fibonacci numbers: a(n) = a(n-1) + 7*a(n-2), a(0)=0, a(1)=1. 16
 0, 1, 1, 8, 15, 71, 176, 673, 1905, 6616, 19951, 66263, 205920, 669761, 2111201, 6799528, 21577935, 69174631, 220220176, 704442593, 2245983825, 7177081976, 22898968751, 73138542583, 233431323840, 745401121921, 2379420388801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS One obtains A015523 through a binomial transform, and A197189 by shifting one place left (starting 1,1,8 with offset 0) followed by a binomial transform. - R. J. Mathar, Oct 11 2011 The compositions of n in which each positive integer is colored by one of p different colors are called p-colored compositions of n. For n>=2, 8*a(n-1) equals the number of 8-colored compositions of n, with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011 Pisano period lengths: 1, 3, 8, 6, 4, 24, 1, 6, 24, 12, 60, 24, 12, 3, 8, 6, 288, 24, 120, 12, ... - R. J. Mathar, Aug 10 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Joerg Arndt, Matters Computational (The Fxtbook), section 14.8 "Strings with no two consecutive nonzero digits", pp.317-318 M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. Index entries for linear recurrences with constant coefficients, signature (1,7). FORMULA O.g.f.: x/(1-x-7x^2). - R. J. Mathar, May 06 2008 a(n) = ( ((1+sqrt(29))/2)^(n+1) - ((1-sqrt(29))/2)^(n+1) )/sqrt(29). a(n) = 8*a(n-2) + 7*a(n-3) with characteristic polynomial x^3 - 8*x - 7. - Roger L. Bagula, May 30 2007 a(n+1) = Sum_{k=0..n} A109466(n,k)*(-7)^(n-k). - Philippe Deléham, Oct 26 2008 a(n) = (Sum_{1<=k<=n, k odd} C(n,k)*29^((k-1)/2))/2^(n-1). - Vladimir Shevelev, Feb 05 2014 MATHEMATICA (* recursion *) A015442[0] := 0; A015442[1] := 1; A015442[ 2] := 1; A015442[n_] := A015442[n] = 8*A015442[n - 2] + 7*A015442[n - 3]; Table[A015442[n], {n, 0, 25}]  (* Roger L. Bagula *) (* matrix representation *) mat15442 = {{0, 1, 0}, {0, 0, 1}, {7, 8, 0}}; w15442[ 0] = {0, 1, 1}; w15442[n_] := w15442[n] = mat15442.w15442[n - 1]; Table[w15442[n][[1]], {n, 0, 25}]  (* Roger L. Bagula *) LinearRecurrence[{1, 7}, {0, 1}, 30] (* Vincenzo Librandi, Oct 17 2012 *) PROG (Sage) [lucas_number1(n, 1, -7) for n in xrange(0, 27)] # Zerinvary Lajos, Apr 22 2009 (MAGMA) I:=[0, 1]; [n le 2 select I[n] else Self(n-1) + 7*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012 (PARI) concat(0, Vec(1/(1-x-7*x^2)+O(x^99))) \\ Charles R Greathouse IV, Mar 12 2014 CROSSREFS Cf. A015440, A015441. Sequence in context: A048732 A185038 A193490 * A253211 A275246 A177199 Adjacent sequences:  A015439 A015440 A015441 * A015443 A015444 A015445 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 03:43 EDT 2018. Contains 316259 sequences. (Running on oeis4.)