login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109466 Riordan array (1, x(1-x)). 51
1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 0, 1, -3, 1, 0, 0, 0, 3, -4, 1, 0, 0, 0, -1, 6, -5, 1, 0, 0, 0, 0, -4, 10, -6, 1, 0, 0, 0, 0, 1, -10, 15, -7, 1, 0, 0, 0, 0, 0, 5, -20, 21, -8, 1, 0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1, 0, 0, 0, 0, 0, 0, -6, 35, -56, 36, -10, 1, 0, 0, 0, 0, 0, 0, 1, -21, 70, -84, 45, -11, 1, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Inverse is Riordan array (1, xc(x)) (A106566).

Triangle T(n,k), 0<=k<=n, read by rows, given by [0, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Modulo 2, this sequence gives A106344. [Philippe Deléham, Dec 18 2008]

Coefficient array of the polynomials Chebyshev_U(n, sqrt(x)/2)*(sqrt(x))^n. [Paul Barry, Sep 28 2009]

LINKS

Table of n, a(n) for n=0..94.

P. Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583, 2013

FORMULA

Number triangle T(n, k) = (-1)^(n-k)*binomial(k, n-k).

T(n, k)*2^(n-k) = A110509(n, k); T(n, k)*3^(n-k) = A110517(n, k).

Sum_{k, 0<=k<=n}T(n,k)*A000108(k)=1 . - Philippe Deléham, Jun 11 2007

Sum_{k, 0<=k<=n}T(n,k)*A144706(k)=A082505(n+1). [From Philippe Deléham, Oct 30 2008]

Sum_{k, 0<=k<=n}T(n,k)*A002450(k)=A100335(n). [Philippe Deléham, Oct 30 2008]

Sum_{k, 0<=k<=n}T(n,k)*A001906(k)=A100334(n). [Philippe Deléham, Oct 30 2008]

Sum_{k, 0<=k<=n}T(n,k)*A015565(k)=A099322(n). [Philippe Deléham, Oct 30 2008]

Sum_{k, 0<=k<=n}T(n,k)*A003462(k)=A106233(n). [Philippe Deléham, Oct 30 2008]

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = -12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. [Philippe Deléham, Oct 27 2008]

Sum_{k, 0<=k<=n}T(n,k)*x^k = A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively. [Philippe Deléham, Oct 28 2008]

G.f.: 1/(1-y*x+y*x^2). - Philippe Deléham, Dec 15 2011

T(n,k) = T(n-1,k-1) - T(n-2,k-1), T(n,0) = 0^n. - Philippe Deléham, Feb 15 2012

Sum_[k, 0<=k<=n}T(n,k)*x^(n-k) = F(n+1,-x) where F(n,x)is the n-th Fibonacci polynomial in x defined in A011973. - Philippe Deléham, Feb 22 2013

Sum_{k, 0<=k<=n}T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 26 2013

Sum_{k, 0<=k<=n}T(n,k)*T(n+1,k) = -A110320(n). - Philippe Deléham, Feb 26 2013

EXAMPLE

Rows begin:

1;

0, 1;

0, -1, 1;

0, 0, -2, 1;

0, 0, 1, -3, 1;

0, 0, 0, 3, -4, 1;

0, 0, 0, -1, 6, -5, 1;

0, 0, 0, 0, -4, 10, -6, 1;

0, 0, 0, 0, 1, -10, 15, -7, 1;

0, 0, 0, 0, 0, 5, -20, 21, -8, 1;

0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1;

Contribution from Paul Barry, Sep 28 2009: (Start)

Production array is

0, 1,

0, -1, 1,

0, -1, -1, 1,

0, -2, -1, -1, 1,

0, -5, -2, -1, -1, 1,

0, -14, -5, -2, -1, -1, 1,

0, -42, -14, -5, -2, -1, -1, 1,

0, -132, -42, -14, -5, -2, -1, -1, 1,

0, -429, -132, -42, -14, -5, -2, -1, -1, 1 (End)

CROSSREFS

Cf. A026729 (unsigned version).

Sequence in context: A108063 A164846 A026729 * A076833 A071676 A115363

Adjacent sequences:  A109463 A109464 A109465 * A109467 A109468 A109469

KEYWORD

easy,sign,tabl

AUTHOR

Philippe Deléham, Aug 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 15:24 EST 2014. Contains 250363 sequences.