login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015445 Generalized Fibonacci numbers: a(n) = a(n-1) + 9*a(n-2). 17
1, 1, 10, 19, 109, 280, 1261, 3781, 15130, 49159, 185329, 627760, 2295721, 7945561, 28607050, 100117099, 357580549, 1258634440, 4476859381, 15804569341, 56096303770, 198337427839, 703204161769, 2488241012320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The compositions of n  in which each natural number is colored by one of  p different colors are called p-colored compositions of n.  For n>=2, 10*a(n-2) equals the number of  10-colored compositions of n with all parts >=2, such that  no adjacent parts have  the same color. - Milan Janjic, Nov 26 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,9)

FORMULA

a(n) = (((1+sqrt(37))/2)^(n+1) - ((1-sqrt(37))/2)^(n+1))/sqrt(37).

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*9^k. - Paul Barry, Jul 20 2004

a(n) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*3^(n-k)/2}. - Paul Barry, Aug 28 2005

a(n) = Sum_{k=0..n} A109466(n,k)*(-9)^(n-k). - Philippe Deléham, Oct 26 2008

a(n) = (1/37)*(1/2+(1/2)*sqrt(37))^n*sqrt(37)-(1/37)*(1/2-(1/2)*sqrt(37))^n*sqrt(37). - Paolo P. Lava, Oct 01 2008 (May produce sequence with a different offset.)

G.f.: (-9*x-1)/(9*x^2+x-1) a(n)=(-703*(1/2-sqrt(37)/2)^n + 199*sqrt(37)*(1/2-sqrt(37)/2)^n-333*(1/2+sqrt(37)/2)^n + 171*sqrt(37)*(1/2+sqrt(37)/2)^n)/(74*(5*sqrt(37)-14)). - Alexander R. Povolotsky, Oct 13 2010

a(n) = Sum_{1<=k<=n+1, k odd} C(n+1,k)*37^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014

MATHEMATICA

CoefficientList[Series[(1+9*x)/(1-x-9*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 9}, {1, 1}, 50] (* G. C. Greubel, Apr 30 2017 *)

PROG

(Sage) [lucas_number1(n, 1, -9) for n in xrange(1, 25)] # Zerinvary Lajos, Apr 22 2009

(MAGMA) [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+9*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011

(PARI) a(n)=([0, 1; 9, 1]^n*[1; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016

CROSSREFS

Cf. A015443, A015442, A026595.

Sequence in context: A131495 A060630 A070199 * A220005 A253213 A293929

Adjacent sequences:  A015442 A015443 A015444 * A015446 A015447 A015448

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

EXTENSIONS

Edited by N. J. A. Sloane, Oct 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 22:56 EST 2018. Contains 299427 sequences. (Running on oeis4.)