This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128099 Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)). 18
 1, 1, 1, 2, 1, 4, 1, 6, 4, 1, 8, 12, 1, 10, 24, 8, 1, 12, 40, 32, 1, 14, 60, 80, 16, 1, 16, 84, 160, 80, 1, 18, 112, 280, 240, 32, 1, 20, 144, 448, 560, 192, 1, 22, 180, 672, 1120, 672, 64, 1, 24, 220, 960, 2016, 1792, 448, 1, 26, 264, 1320, 3360, 4032, 1792, 128, 1, 28 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Row sums are the Jacobsthal numbers (A001045). Apparently, T(n,k)/2^n equals the probability P that n will occur as a partial sum in a randomly-generated infinite sequence of 1s and 2s with n compositions (ordered partitions) into (n-2k) 1s and k 2s. Example: T(6,2)=24; P = 3/8 (24/2^6) that 6 will occur as a partial sum in the sequence with 2 (6-2*2) 1s and 2 2s. - Bob Selcoe, Jul 06 2013 From Johannes W. Meijer, Aug 28 2013: (Start) The antidiagonal sums are A077949 and the backwards antidiagonal sums are A052947. Moving the terms in each column of this triangle, see the example, upwards to row 0 gives the Pell-Jacobsthal triangle A013609 as a square array. (End) The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.000..., when n approaches infinity. - Zagros Lalo, Jul 31 2018 It appears that the rows of this array are the coefficients of the Jacobsthal polynomials (see MathWorld link). - Michel Marcus, Jun 15 2019 REFERENCES Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358 LINKS G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened Richard Fors, Independence Complexes of Certain Families of Graphs, Master thesis in Mathematics at KTH, presented Aug 19 2011. R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares arXiv:1609.03964  [math.CO] (2016). Eric Weisstein's World of Mathematics, Jacobsthal Polynomial FORMULA T(n, k) = 2^k*binomial(n-k,k) = 2^k*A011973(n,k). G.f.: 1/(1-z-2*t*z^2). Sum_{k=0..floor(n/2)} k*(T(n,k) = A095977(n-1). From Johannes W. Meijer, Aug 28 2013: (Start) T(n, k) = 2*T(n-2, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, k) = 0 for k < 0 and k > floor(n/2). T(n, k) = A013609(n-k, k), n >= 0 and 0 <= k <= floor(n/2). (End) EXAMPLE Triangle starts:   1;   1;   1,  2;   1,  4;   1,  6,  4;   1,  8, 12;   1, 10, 24,  8;   1, 12, 40, 32; MAPLE T := proc(n, k) if k<=n/2 then 2^k*binomial(n-k, k) else 0 fi end: for n from 0 to 16 do seq(T(n, k), k=0..floor(n/2)) od; # yields sequence in triangular form T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013 MATHEMATICA Table[2^k*Binomial[n - k, k] , {n, 0, 25}, {k, 0, Floor[n/2]}] // Flatten  (* G. C. Greubel, Dec 28 2016 *) t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *) CROSSREFS Cf. (Triangle sums) A001045, A095977, A077949, A052947, A113726, A052942, A077909. Cf. (Similar triangles) A008315, A011973, A102541. Cf. A013609, A038207 Cf. A207538 Sequence in context: A147418 A146386 A305098 * A182242 A261605 A239093 Adjacent sequences:  A128096 A128097 A128098 * A128100 A128101 A128102 KEYWORD nonn,tabf,changed AUTHOR Emeric Deutsch, Feb 18 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 11:12 EDT 2019. Contains 324152 sequences. (Running on oeis4.)