login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114197 A Pascal-Fibonacci triangle. 14
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 31, 21, 6, 1, 1, 7, 31, 61, 61, 31, 7, 1, 1, 8, 43, 106, 142, 106, 43, 8, 1, 1, 9, 57, 169, 286, 286, 169, 57, 9, 1, 1, 10, 73, 253, 520, 659, 520, 253, 73, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

T(2n,n) is A114198. Row sums are A114199. Row sums of inverse are 0^n.

LINKS

Table of n, a(n) for n=0..65.

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

FORMULA

As a number triangle, T(n,k) = Sum_{j=0..n-k} C(n-k, j)C(k, j)F(j);

As a number triangle, T(n,k) = Sum_{j=0..n} C(n-k, n-j)C(k, j-k)F(j-k);

As a number triangle, T(n,k) = Sum_{j=0..n} C(k, j)C(n-k, n-j)F(k-j) if k <= n, 0 otherwise.

As a square array, T(n,k) = Sum_{j=0..n} C(n, j)C(k, j)F(j);

As a square array, T(n,k) = Sum_{j=0..n+k} C(n, n+k-j)C(k, j-k)F(j-k);

Column k has g.f.: (Sum_{j=0..k} C(k, j)F(j+1)(x/(1-x))^j)*x^k/(1-x);

G.f.: -((x^2-x)*y-x+1)/((x^4+x^3-x^2)*y^2+(x^3-3*x^2+2*x)*y-x^2+2*x-1). - Vladimir Kruchinin, Jan 15 2018

EXAMPLE

Triangle begins

  1;

  1,   1;

  1,   2,   1;

  1,   3,   3,   1;

  1,   4,   7,   4,   1;

  1,   5,  13,  13,   5,   1;

  1,   6,  21,  31,  21,   6,   1;

  1,   7,  31,  61,  61,  31,   6,   1;

  1,   8,  43, 106, 142, 106,  43,   8,   1;

CROSSREFS

Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Sequence in context: A166293 A094525 A130671 * A108350 A086617 A094526

Adjacent sequences:  A114194 A114195 A114196 * A114198 A114199 A114200

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Nov 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 07:11 EDT 2018. Contains 315226 sequences. (Running on oeis4.)