login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083858
Expansion of x/(1 - 3*x - 6*x^2).
18
0, 1, 3, 15, 63, 279, 1215, 5319, 23247, 101655, 444447, 1943271, 8496495, 37149111, 162426303, 710173575, 3105078543, 13576277079, 59359302495, 259535569959, 1134762524847, 4961500994295, 21693078131967, 94848240361671
OFFSET
0,3
COMMENTS
Binomial transform of A015443. A row of array A083857.
Pisano period lengths: 1, 1, 1, 1, 12, 1, 8, 1, 1, 12, 110, 1, 168, 8, 12, 2, 16, 1, 360, 12, ... - R. J. Mathar, Aug 10 2012
FORMULA
a(n) = 3*a(n-1) + 6*a(n-2), a(0)=0, a(1)=1.
a(n) = (3*sqrt(33)/2 + 21/2)^(n/2)/sqrt(33) - (21/2 - 3*sqrt(33)/2)^(n/2)*(-1)^n/sqrt(33).
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(6*k+3 + 6*x )/( x*(6*k+6 + 6*x ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013
a(n) = B(n, k + 2^(n-1)) - B(n,k) where B(n,k) is formed by the family of recursions b(n) = 3*(b(n-1) + b(n-2))/2, with b(0) = 1 and b(1) = k, as explained further in A249861. - Richard R. Forberg, Nov 04 2014
MATHEMATICA
a[n_]:=(MatrixPower[{{1, 2}, {1, -4}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{3, 6}, {0, 1}, 30] (* G. C. Greubel, Jan 16 2018 *)
PROG
(Sage) [lucas_number1(n, 3, -6) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-3*x-6*x^2))) \\ G. C. Greubel, Jan 16 2018
(Magma) I:=[0, 1]; [n le 2 select I[n] else 3*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
CROSSREFS
Sequence in context: A024036 A111303 A118339 * A151241 A080948 A098102
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 06 2003
STATUS
approved