login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083858 Expansion of x/(1 - 3*x - 6*x^2). 17
0, 1, 3, 15, 63, 279, 1215, 5319, 23247, 101655, 444447, 1943271, 8496495, 37149111, 162426303, 710173575, 3105078543, 13576277079, 59359302495, 259535569959, 1134762524847, 4961500994295, 21693078131967, 94848240361671 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of A015443. A row of array A083857.

Pisano period lengths: 1, 1, 1, 1, 12, 1, 8, 1, 1, 12, 110, 1, 168, 8, 12, 2, 16, 1, 360, 12, ... - R. J. Mathar, Aug 10 2012

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,6).

FORMULA

a(n) = 3*a(n-1) + 6*a(n-2), a(0)=0, a(1)=1.

a(n) = (3*sqrt(33)/2 + 21/2)^(n/2)/sqrt(33) - (21/2 - 3sqrt(33)/2)^(n/2)*(-1)^n/sqrt(33).

G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(6*k+3 + 6*x )/( x*(6*k+6 + 6*x ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013

a(n) = B(n, k + 2^(n-1)) - B(n,k) where B(n,k) is formed by the family of recursions  b(n) = 3*(b(n-1) + b(n-2))/2, with b(0) = 1 and b(1) = k, as explained further in A249861. - Richard R. Forberg, Nov 04 2014

MATHEMATICA

a[n_]:=(MatrixPower[{{1, 2}, {1, -4}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)

LinearRecurrence[{3, 6}, {0, 1}, 30] (* G. C. Greubel, Jan 16 2018 *)

PROG

(Sage) [lucas_number1(n, 3, -6) for n in xrange(0, 24)] # Zerinvary Lajos, Apr 22 2009

(PARI) x='x+O('x^30); concat([0], Vec(x/(1-3*x-6*x^2))) \\ G. C. Greubel, Jan 16 2018

(MAGMA) I:=[0, 1]; [n le 2 select I[n] else 3*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018

CROSSREFS

Cf. A015523, A015524.

Sequence in context: A024036 A111303 A118339 * A151241 A080948 A098102

Adjacent sequences:  A083855 A083856 A083857 * A083859 A083860 A083861

KEYWORD

easy,nonn

AUTHOR

Paul Barry, May 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 11:05 EDT 2018. Contains 315389 sequences. (Running on oeis4.)