This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015524 a(n) = 3*a(n-1) + 7*a(n-2). 19
 0, 1, 3, 16, 69, 319, 1440, 6553, 29739, 135088, 613437, 2785927, 12651840, 57457009, 260933907, 1185000784, 5381539701, 24439624591, 110989651680, 504046327177, 2289066543291, 10395523920112, 47210037563373 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Linear 2nd order recurrence. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,7). FORMULA From R. J. Mathar, Apr 21 2008: (Start) O.g.f.: x/(1 - 3*x - 7*x^2). a(n) = 14^n*(1/A^n -(-1)^n/B^n)/sqrt(37), where A = sqrt(37) - 3 = A010491 - 3 and B = sqrt(37) + 3 = A010491 + 3. (End) a(n) = (7*(111+23*sqrt(37))*(1/2*(3+sqrt(37)))^n  + (2553 + 431*sqrt(37)) * (1/2 (3-sqrt(37)))^n)/(518*(45+8*sqrt(37))). - Harvey P. Dale, Jul 04 2011 MATHEMATICA a[n_]:=(MatrixPower[{{1, 3}, {1, -4}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{3, 7}, {0, 1}, 30] (* Harvey P. Dale, Jul 04 2011 *) PROG (Sage) [lucas_number1(n, 3, -7) for n in xrange(0, 23)] #  Zerinvary Lajos, Apr 22 2009 (MAGMA) [n le 2 select n-1 else 3*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012 (PARI) x='x+O('x^30); concat([0], Vec(x/(1 - 3*x - 7*x^2))) \\ G. C. Greubel, Jan 01 2018 CROSSREFS Sequence in context: A278089 A248016 A000269 * A012279 A037098 A316170 Adjacent sequences:  A015521 A015522 A015523 * A015525 A015526 A015527 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 15:21 EDT 2019. Contains 328162 sequences. (Running on oeis4.)