OFFSET
2,3
COMMENTS
FORMULA
PROG
(PARI)
\\ Slow program, for computing just a few terms:
A002620(n) = ((n^2)>>2);
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
(PARI)
A376410(n) = AntiDeriv(n!);
AntiDeriv(n, startvlen=1, solsfilename="") = { my(v = vector(startvlen, i, 2), ip = #v, r, c=0); while(1, r = A003415vrl(v, n); if(0==r, ip--, if(r > 1, c++; if(solsfilename!="", write(solsfilename, r*factorback(v)))); ip = #v); if(0==ip, v = vector(1+#v, i, 2); ip = #v; if(A003415vec(v) > n, return(c)), v[ip] = nextprime(1+v[ip]); for(i=1+ip, #v, v[i]=v[i-1]))); };
A003415vec(tv) = { my(n=factorback(tv), s=0, m=1, spf); for(i=1, #tv, spf = tv[i]; n /= spf; s += m*n; m *= spf); (s); }; \\ Compute Arithmetic derivative from the vector of primes.
A003415vrl(pv, lim) = { my(n=factorback(pv), x=lim-n, s=0, m=1, spf, u=n); for(i=1, #pv, spf = pv[i]; u /= spf; s += m*u; m *= spf); if(((x/s)<pv[#pv]), 0, if(!(x%s) && isprime(x/s), (x/s), 1)); };
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Antti Karttunen, Nov 06 2024
STATUS
approved