login
A376409
a(n) = A048675(A376408(n)); Partial sums of A376408.
3
0, 1, 3, 9, 99, 353529, 274407373885532679, 2443417474326613595267894539584266773823049253134356679026035220285823429
OFFSET
0,3
COMMENTS
a(8) has 407 digits, a(9) has 2804 digits.
By induction, it is easy to see that formula a(n) = A048675(A376408(n)) implies that from the second term onward, this sequence gives the partial sums of A376408, as A048675 is fully additive.
FORMULA
a(0) = 0; and for n >= 1, a(n) = a(n-1) + A376408(n-1) = Sum_{i=0..n-1} A376408(i).
PROG
(PARI)
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
A376408(n) = if(!n, 1, my(x=A376408(n-1)); x*A019565(x));
CROSSREFS
Cf. also A376401 (an analogous sequence for A276075).
Sequence in context: A250302 A156336 A078221 * A245646 A018716 A018725
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 04 2024
STATUS
approved