login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369490
a(n) = 3^(n+1) + 2*(-2)^(n+1).
2
-1, 17, 11, 113, 179, 857, 1931, 7073, 18659, 61097, 173051, 539633, 1577939, 4815737, 14283371, 43177793, 128878019, 387944777, 1161212891, 3488881553, 10456158899, 31389448217, 94126401611, 282463090913, 847221500579, 2542000046057
OFFSET
0,2
FORMULA
a(n) = a(n-1) + 6*a(n-2); a(0) = -1, a(1) = 17.
G.f.: (18*x-1)/((1+2*x)*(1-3*x)).
a(2*n) = A003063(2*n+2).
a(2*n+1) = A085279(2*n+3).
a(n) = 18*A015441(n) - A015441(n+1).
MATHEMATICA
LinearRecurrence[{1, 6}, {-1, 17}, 26] (* James C. McMahon, Jan 30 2024 *)
PROG
(Python)
def A369490(n): return 3**(n+1)+(1<<n+2 if n&1 else -(1<<n+2)) # Chai Wah Wu, Feb 25 2024
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Philippe Deléham, Jan 24 2024
STATUS
approved