login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 3^(n+1) + 2*(-2)^(n+1).
2

%I #14 Mar 04 2024 00:55:09

%S -1,17,11,113,179,857,1931,7073,18659,61097,173051,539633,1577939,

%T 4815737,14283371,43177793,128878019,387944777,1161212891,3488881553,

%U 10456158899,31389448217,94126401611,282463090913,847221500579,2542000046057

%N a(n) = 3^(n+1) + 2*(-2)^(n+1).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 6).

%F a(n) = a(n-1) + 6*a(n-2); a(0) = -1, a(1) = 17.

%F G.f.: (18*x-1)/((1+2*x)*(1-3*x)).

%F a(2*n) = A003063(2*n+2).

%F a(2*n+1) = A085279(2*n+3).

%F a(n) = 18*A015441(n) - A015441(n+1).

%t LinearRecurrence[{1,6},{-1,17},26] (* _James C. McMahon_, Jan 30 2024 *)

%o (Python)

%o def A369490(n): return 3**(n+1)+(1<<n+2 if n&1 else -(1<<n+2)) # _Chai Wah Wu_, Feb 25 2024

%Y Cf. A000079, A000244, A003063, A015441, A085279.

%K sign,easy

%O 0,2

%A _Philippe Deléham_, Jan 24 2024