login
A369493
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = prime(n) and the short leg "a" is odd.
1
3, 4, 5, 5, 12, 13, 9, 40, 41, 13, 84, 85, 21, 220, 221, 25, 312, 313, 33, 544, 545, 37, 684, 685, 45, 1012, 1013, 57, 1624, 1625, 61, 1860, 1861, 73, 2664, 2665, 81, 3280, 3281, 85, 3612, 3613, 93, 4324, 4325, 105, 5512, 5513, 117, 6844, 6845, 121, 7320, 7321, 133, 8844, 8845, 141, 9940, 9941
OFFSET
1,1
COMMENTS
See Exercise 3.5. of the reference.
REFERENCES
Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
LINKS
Miguel-Ángel Pérez García-Ortega, Ejercicio 3.5.
FORMULA
Row n = (a, b, c) = (2*p - 1, 2*p^2 - 2*p, 2*p^2 - 2*p + 1), where p = prime(n) = A000040(n).
EXAMPLE
Table begins:
n=1: 3, 4, 5;
n=2: 5, 12, 13;
n=3: 9, 40, 41;
n=4: 13, 84, 85;
n=5: 21, 220, 221;
CROSSREFS
Cf. A000040, A076274 (short leg), A006093 (inradius).
Sequence in context: A370760 A103606 A139794 * A365796 A202819 A185383
KEYWORD
nonn,easy,tabf
STATUS
approved