login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365796
Sequence of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its short leg the hypotenuse of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.
4
3, 4, 5, 5, 12, 13, 13, 84, 85, 85, 3612, 3613, 3613, 6526884, 6526885, 6526885, 21300113901612, 21300113901613, 21300113901613, 226847426110843688722000884, 226847426110843688722000885, 226847426110843688722000885, 25729877366557343481074291996721923093306518970391612, 25729877366557343481074291996721923093306518970391613, 25729877366557343481074291996721923093306518970391613
OFFSET
1,1
COMMENTS
See Corolario 5.1.1. of the reference file (first section).
(a_1, b_1, c_1) = (3,4,5) and for each n > 1:
(a_n, b_n, c_n) = (c_(n-1), (c_(n-1))^2-1)/2, ((c_(n-1))^2+1)/2).
REFERENCES
J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2023.
LINKS
Miguel-Ángel Pérez García-Ortega, Capitulo 5. Catetos, El Libro de las Ternas Pitagóricas.
EXAMPLE
Triples begin:
3, 4, 5;
5, 12, 13;
13, 84, 85;
85, 3612, 3613;
...
MATHEMATICA
{a0, b0, c0}={3, 4, 5};
m=8;
f[n_]:=Module[{fn0=c0, fn1=(c0^2+1)/2}, Do[{fn0, fn1}={fn1, (fn0^2+1)/2}, {2n-1}]; fn0]; t[n_]:={f[n-1], f[n]-1, f[n]};
ternas={a0, b0, c0};
For[i=1, i<=m, i++, ternas=Join[ternas, t[i]]];
ternas
CROSSREFS
Cf. A007018 (inradius), A000058 (lower exinradius).
Cf. A053631 (long leg), A053630 (hypotenuse), A365577, A365578.
Sequence in context: A103606 A139794 A369493 * A202819 A185383 A004484
KEYWORD
nonn,tabf
STATUS
approved