login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365793
a(n) = number of k <= b(n) such that rad(k) = rad(b(n)), where rad(n) = A007947(n) and b(n) = A286708(n).
2
5, 8, 6, 10, 11, 6, 8, 14, 5, 15, 16, 8, 11, 18, 5, 7, 12, 20, 21, 8, 7, 11, 14, 23, 18, 9, 24, 15, 6, 9, 25, 8, 5, 26, 8, 9, 13, 8, 6, 14, 18, 29, 19, 26, 11, 30, 19, 12, 8, 31, 10, 20, 32, 6, 32, 11, 16, 10, 33, 5, 10, 17, 22, 6, 8, 8, 13, 35, 28, 36, 8, 14
OFFSET
1,1
COMMENTS
Alternatively, position of A126706(n) in the list k*{R(k)} containing m such that A007947(m) = k, where k = A007947(n).
LINKS
FORMULA
a(n) = A008479(A286708(n)).
a(n) > 1 for all n.
EXAMPLE
a(1) = 5 since rad(b(1)) = rad(36) = 6, and in the sequence k*{R(6)} = 6*{A003586} = {6, 12, 18, 24, 36, ...}, 36 is the 5th term.
a(2) = 8 since rad(b(2)) = rad(72) = 6, and 72 is the 8th term in k*{R(6)}.
a(3) = 6 since rad(b(3)) = rad(100) = 10, and in the sequence k*{R(10)} = 10*{A003592} = {10, 20, 40, 50, 80, 100, ...}, 100 is the 6th term, etc.
MATHEMATICA
nn = 4000;
f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
t = Select[
Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &],
AllTrue[FactorInteger[#][[All, -1]], # > 1 &] &];
s = Map[f, t];
Map[Function[k, Set[r[k], k*Select[Range[nn/k], Divisible[k, f[#]] &]]], Union@ s];
Array[FirstPosition[r[s[[#]]], t[[#]]][[1]] &, Length[t]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Sep 22 2023
STATUS
approved