login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369488
Expansion of (1/x) * Series_Reversion( x / (1-x)^2 * (1-x-x^2)^3 ).
2
1, 1, 5, 20, 101, 522, 2860, 16115, 93200, 549286, 3288633, 19942666, 122243210, 756188245, 4714629930, 29595888020, 186903732003, 1186606564605, 7569137651545, 48486925091800, 311788811682494, 2011863788481296, 13022795014568290, 84539592912435990
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(2*n-k,n-2*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1-x)^2*(1-x-x^2)^3)/x)
(PARI) a(n, s=2, t=3, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t-u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A369487.
Sequence in context: A026118 A108509 A110595 * A092640 A165961 A276314
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 24 2024
STATUS
approved