login
A369485
Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^3)^2) ).
4
1, 4, 22, 142, 1007, 7590, 59683, 484112, 4021061, 34029532, 292373296, 2543542676, 22360917140, 198341377680, 1772860026933, 15952960500612, 144397901220980, 1313835276189792, 12009823111155481, 110240431974732436, 1015727265740887873
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(4*n-k+4,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+x+x^3)^2))/x)
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
CROSSREFS
Sequence in context: A045744 A369504 A243626 * A104991 A368562 A027391
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 23 2024
STATUS
approved