OFFSET
2,1
COMMENTS
Essentially the same as A073887.
LINKS
Zak Seidov, Table of n, a(n) for n = 2..1000
FORMULA
a(n)={ min prime(k): [ sum(j=k..k+n-1) prime(j)] in A000290}. - R. J. Mathar, Nov 27 2007
EXAMPLE
a(2)=17, because it is the smallest prime in a sequence of n=2 consecutive primes, which add to a perfect square, namely 17+19=36=6^2. The sums of earlier pairs, 2+3, 3+5, 5+7, 7+11 etc. fail to produces sums which are any perfect square.
MATHEMATICA
Module[{prs=Prime[Range[3200]]}, Table[First[SelectFirst[Partition[ prs, n, 1], IntegerQ[ Sqrt[Total[#]]]&]], {n, 2, 52}]] (* The program uses the SelectFirst function from Mathematica version 10 *) (* Harvey P. Dale, Sep 06 2015 *)
PROG
(PARI) a(n) = {ip = 1; while (! issquare(sum(i=ip, ip+n-1, prime(i))), ip++); prime(ip); } \\ Michel Marcus, Jun 08 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Sep 06 2007
EXTENSIONS
Edited by R. J. Mathar, Nov 27 2007
STATUS
approved