login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367169
a(n) is the sum of the exponents in the prime factorization of n that are powers of 2.
5
0, 1, 1, 2, 1, 2, 1, 0, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 1, 2, 2, 0, 3, 1, 3, 1, 0, 2, 2, 2, 4, 1, 2, 2, 1, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 1, 2, 1, 2, 2, 1, 4, 1, 2, 3, 0, 2, 3, 1, 3, 2, 3, 1, 2, 1, 2, 3, 3, 2, 3, 1, 5, 4, 2, 1, 4, 2, 2, 2
OFFSET
1,4
LINKS
FORMULA
a(n) = A001222(A367168(n)).
Additive with a(p^e) = A048298(e).
a(n) <= A001222(n), with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -P(2) + Sum_{k>=1} 2^k * (P(2^k) - P(2^k+1)) = 0.28425245481079272416..., where P(s) is the prime zeta function.
MATHEMATICA
f[p_, e_] := If[e == 2^IntegerExponent[e, 2], e, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); sum(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), f[i, 2], 0)); }
(Python)
from sympy import factorint
def A367169(n): return sum(e for e in factorint(n).values() if not(e&-e)^e) # Chai Wah Wu, Nov 10 2023
CROSSREFS
Similar sequences: A350386, A350387.
Sequence in context: A105700 A378534 A366077 * A236831 A030205 A159817
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Nov 07 2023
STATUS
approved