login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378534
Dirichlet convolution of A033879 and A378525.
3
1, -1, -1, -2, -1, -2, -1, 0, -2, -2, -1, 1, -1, -2, -2, 0, -1, 1, -1, 1, -2, -2, -1, 2, -2, -2, 0, 1, -1, 2, -1, 0, -2, -2, -2, 4, -1, -2, -2, 2, -1, 2, -1, 1, 1, -2, -1, 0, -2, 1, -2, 1, -1, 2, -2, 2, -2, -2, -1, 6, -1, -2, 1, 0, -2, 2, -1, 1, -2, 2, -1, -1, -1, -2, 1, 1, -2, 2, -1, 0, 0, -2, -1, 6, -2, -2, -2, 2, -1, 6
OFFSET
1,4
COMMENTS
Möbius transform of A378532.
LINKS
FORMULA
a(n) = Sum_{d|n} A033879(d)*A378525(n/d).
a(n) = Sum_{d|n} A008683(d)*A378532(n/d).
PROG
(PARI)
A033879(n) = (n+n-sigma(n));
A378542(n) = sumdiv(n, d, d*!(bigomega(n/d)%2));
memoA378525 = Map();
A378525(n) = if(1==n, 1, my(v); if(mapisdefined(memoA378525, n, &v), v, v = -sumdiv(n, d, if(d<n, A378542(n/d)*A378525(d), 0)); mapput(memoA378525, n, v); (v)));
A378534(n) = sumdiv(n, d, A033879(d)*A378525(n/d));
CROSSREFS
Cf. A008683, A033879, A323910, A378532 (inverse Möbius transform), A378533 (Dirichlet inverse), A378542.
Cf. also A378224.
Sequence in context: A118832 A122807 A105700 * A366077 A367169 A236831
KEYWORD
sign
AUTHOR
Antti Karttunen, Dec 01 2024
STATUS
approved