login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367166
E.g.f. satisfies A(x) = 1 + A(x)^3 * (1 - exp(-x*A(x))).
1
1, 1, 7, 106, 2493, 79866, 3245591, 159980122, 9275436505, 618568035130, 46649552389515, 3925749706207770, 364709764578733349, 37075283015959294666, 4093764536232959203999, 487906508897555966553370, 62428514041971948893889969, 8535465441907344876112112346
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+3*k)!/(n+2*k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*(n+3*k)!/(n+2*k+1)!*stirling(n, k, 2));
CROSSREFS
Cf. A367165.
Sequence in context: A360370 A203971 A145167 * A141358 A141362 A213863
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2023
STATUS
approved