login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159817
Coefficients of L-series for elliptic curve "80b2": y^2 = x^3 - x^2 - x.
3
1, 2, -1, -2, 1, 0, 2, -2, -6, 4, -4, -6, 1, -4, 6, 4, 0, 2, 2, 4, 6, 10, -1, 6, -3, -12, -6, 0, 8, -12, 2, -2, -2, -2, -12, 12, 2, 2, 0, -8, -11, -6, 6, 12, -6, -4, 8, -4, 2, 0, 6, -14, 4, 6, 2, 4, -6, 6, 2, 12, -11, 12, -1, -2, 20, 0, -8, 4, 18, 4, 12, 0, -6, -6, -6, -20, -6, -4, -22, -12, 12, 10, 0, -18, -9, 4, -6, -2, -24
OFFSET
0,2
COMMENTS
Number 61 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (f(x) * f(x^5))^2 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^10)^3 / (eta(q) * eta(q^4) * eta(q^5) * eta(q^20)))^2 in powers of q.
Euler transform of period 20 sequence [ 2, -4, 2, -2, 4, -4, 2, -2, 2, -8, 2, -2, 2, -4, 4, -2, 2, -4, 2, -4, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 80 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: (Product_{k>0} (1 - (-x)^k) * (1 - (-x)^(5*k)))^2.
a(n) = (-1)^n * A030205(n). Convolution square of A159818.
EXAMPLE
G.f. = 1 + 2*x - x^2 - 2*x^3 + x^4 + 2*x^6 - 2*x^7 - 6*x^8 + 4*x^9 - 4*x^10 + ...
G.f. = q + 2*q^3 - q^5 - 2*q^7 + q^9 + 2*q^13 - 2*q^15 - 6*q^17 + 4*q^19 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x] QPochhammer[ -x^5])^2, {x, 0, n}]; (* Michael Somos, Jun 10 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, ellak( ellinit([0, -1, 0, -1, 0], 1), 2*n + 1))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^10 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^20 + A)))^2, n))};
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==5, (-1)^e, a0=1; a1 = y = -sum(x=0, p-1, kronecker(x^3 - x^2 - x, p)); for(i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))};
CROSSREFS
Sequence in context: A367169 A236831 A030205 * A079532 A328176 A191312
KEYWORD
sign
AUTHOR
Michael Somos, Apr 22 2009
STATUS
approved