login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079532 a(n) = floor(n - sqrt(n)) - phi(n). 4
-1, -1, -1, 0, -2, 1, -2, 1, 0, 2, -3, 4, -3, 4, 3, 4, -4, 7, -4, 7, 4, 7, -4, 11, 0, 8, 3, 10, -5, 16, -5, 10, 7, 12, 5, 18, -6, 13, 8, 17, -6, 23, -6, 17, 14, 17, -6, 25, 0, 22, 11, 20, -7, 28, 7, 24, 13, 22, -7, 36, -7, 24, 19, 24, 8, 37, -8, 27, 16, 37, -8, 39, -8, 29, 26, 31, 8, 45, -8, 39, 18, 32, -9, 50, 11, 34 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

a(n) >= 0 if n is composite.

a(n) = 0 if n is the square of a prime (see A001248). - Michel Lagneau, May 25 2012

REFERENCES

D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 9.

W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

W. Sierpiński, Elementary Theory of Numbers, Warszawa 1964.

MATHEMATICA

Table[Floor[n - Sqrt[n]] - EulerPhi[n], {n, 100}] (* Vincenzo Librandi, Dec 13 2014 *)

PROG

(PARI) vector(100, n, floor(n - sqrt(n)) - eulerphi(n)) \\ Michel Marcus, Dec 12 2014

(MAGMA) [Floor(n - Sqrt(n)) - EulerPhi(n): n in [1..100]]; // Vincenzo Librandi, Dec 13 2014

(Sage) [floor(n-sqrt(n)) - euler_phi(n) for n in (1..100)] # G. C. Greubel, Jan 14 2019

CROSSREFS

Cf. A000010, A079530, A079531, A079533, A079534.

Sequence in context: A236831 A030205 A159817 * A328176 A191312 A240159

Adjacent sequences:  A079529 A079530 A079531 * A079533 A079534 A079535

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Jan 23 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 01:16 EDT 2021. Contains 345098 sequences. (Running on oeis4.)