login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of L-series for elliptic curve "80b2": y^2 = x^3 - x^2 - x.
3

%I #22 Mar 12 2021 22:24:45

%S 1,2,-1,-2,1,0,2,-2,-6,4,-4,-6,1,-4,6,4,0,2,2,4,6,10,-1,6,-3,-12,-6,0,

%T 8,-12,2,-2,-2,-2,-12,12,2,2,0,-8,-11,-6,6,12,-6,-4,8,-4,2,0,6,-14,4,

%U 6,2,4,-6,6,2,12,-11,12,-1,-2,20,0,-8,4,18,4,12,0,-6,-6,-6,-20,-6,-4,-22,-12,12,10,0,-18,-9,4,-6,-2,-24

%N Coefficients of L-series for elliptic curve "80b2": y^2 = x^3 - x^2 - x.

%C Number 61 of the 74 eta-quotients listed in Table I of Martin (1996).

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H Seiichi Manyama, <a href="/A159817/b159817.txt">Table of n, a(n) for n = 0..1000</a>

%H Y. Martin, <a href="http://dx.doi.org/10.1090/S0002-9947-96-01743-6">Multiplicative eta-quotients</a>, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

%H Michael Somos, <a href="/A030203/a030203.txt">Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of (f(x) * f(x^5))^2 in powers of x where f() is a Ramanujan theta function.

%F Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^10)^3 / (eta(q) * eta(q^4) * eta(q^5) * eta(q^20)))^2 in powers of q.

%F Euler transform of period 20 sequence [ 2, -4, 2, -2, 4, -4, 2, -2, 2, -8, 2, -2, 2, -4, 4, -2, 2, -4, 2, -4, ...].

%F a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(5^e) = (-1)^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) otherwise.

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 80 (t/i)^2 f(t) where q = exp(2 Pi i t).

%F G.f.: (Product_{k>0} (1 - (-x)^k) * (1 - (-x)^(5*k)))^2.

%F a(n) = (-1)^n * A030205(n). Convolution square of A159818.

%e G.f. = 1 + 2*x - x^2 - 2*x^3 + x^4 + 2*x^6 - 2*x^7 - 6*x^8 + 4*x^9 - 4*x^10 + ...

%e G.f. = q + 2*q^3 - q^5 - 2*q^7 + q^9 + 2*q^13 - 2*q^15 - 6*q^17 + 4*q^19 + ...

%t a[ n_] := SeriesCoefficient[ (QPochhammer[ -x] QPochhammer[ -x^5])^2, {x, 0, n}]; (* _Michael Somos_, Jun 10 2015 *)

%o (PARI) {a(n) = if( n<0, 0, ellak( ellinit([0, -1, 0, -1, 0], 1), 2*n + 1))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^10 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^20 + A)))^2, n))};

%o (PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==5, (-1)^e, a0=1; a1 = y = -sum(x=0, p-1, kronecker(x^3 - x^2 - x, p)); for(i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))};

%Y Cf. A030205, A159818.

%K sign

%O 0,2

%A _Michael Somos_, Apr 22 2009