login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A363527
Number of integer partitions of n with weighted sum 3*n.
5
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 4, 4, 6, 8, 7, 10, 13, 13, 21, 25, 24, 37, 39, 40, 58, 63, 72, 94, 106, 118, 144, 165, 181, 224, 256, 277, 341, 387, 417, 504, 560, 615, 743, 818, 899, 1066, 1171, 1285, 1502, 1655, 1819, 2108, 2315, 2547, 2915
OFFSET
0,15
COMMENTS
Are the partitions counted all of length > 4?
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27.
EXAMPLE
The partition (2,2,1,1,1,1) has sum 8 and weighted sum 24 so is counted under a(8).
The a(13) = 1 through a(18) = 8 partitions:
(332221) (333221) (33333) (442222) (443222) (443331)
(4322111) (522222) (5322211) (4433111) (444222)
(71111111) (4332111) (55111111) (5332211) (533322)
(63111111) (63211111) (55211111) (4443111)
(63311111) (7222221)
(72221111) (55311111)
(64221111)
(A11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Total[Accumulate[Reverse[#]]]==3n&]], {n, 0, 30}]
CROSSREFS
The version for compositions is A231429.
The reverse version is A363526.
These partitions have ranks A363531.
A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum, rank statistic A029931/A359042.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.
Sequence in context: A100478 A112376 A161359 * A224212 A078490 A282847
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 11 2023
STATUS
approved