login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363532
Number of integer partitions of n with weighted alternating sum 0.
9
1, 0, 0, 1, 0, 0, 2, 2, 0, 3, 3, 3, 5, 5, 10, 12, 7, 14, 25, 18, 22, 48, 48, 41, 67, 82, 89, 111, 140, 170, 220, 214, 264, 392, 386, 436, 623, 693, 756, 934, 1102, 1301, 1565, 1697, 2132, 2616, 2727, 3192, 4062, 4550, 5000, 6132, 7197, 8067, 9338, 10750, 12683
OFFSET
0,7
COMMENTS
We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.
EXAMPLE
The a(11) = 3 through a(15) = 12 partitions (A = 10):
(33221) (84) (751) (662) (A5)
(44111) (6222) (5332) (4442) (8322)
(222221) (7311) (6421) (5531) (9411)
(621111) (532111) (43331) (722211)
(51111111) (42211111) (54221) (831111)
(65111) (3322221)
(432221) (3333111)
(443111) (4422111)
(32222111) (5511111)
(33311111) (22222221)
(72111111)
(6111111111)
MATHEMATICA
altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]], {k, 1, Length[y]}];
Table[Length[Select[IntegerPartitions[n], altwtsum[#]==0&]], {n, 0, 30}]
CROSSREFS
The unweighted version is A035363.
These partitions have ranks A363621.
The triangle for this rank statistic is A363623, reverse A363622.
The version for compositions is A363626.
A000041 counts integer partitions.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A316524 gives alternating sum of prime indices, reverse A344616.
A363619 gives weighted alternating sum of prime indices, reverse A363620.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.
Sequence in context: A379225 A216504 A216673 * A207383 A191362 A137422
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 14 2023
STATUS
approved