OFFSET
0,7
COMMENTS
We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.
EXAMPLE
The a(11) = 3 through a(15) = 12 partitions (A = 10):
(33221) (84) (751) (662) (A5)
(44111) (6222) (5332) (4442) (8322)
(222221) (7311) (6421) (5531) (9411)
(621111) (532111) (43331) (722211)
(51111111) (42211111) (54221) (831111)
(65111) (3322221)
(432221) (3333111)
(443111) (4422111)
(32222111) (5511111)
(33311111) (22222221)
(72111111)
(6111111111)
MATHEMATICA
altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]], {k, 1, Length[y]}];
Table[Length[Select[IntegerPartitions[n], altwtsum[#]==0&]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 14 2023
STATUS
approved