OFFSET
0,6
COMMENTS
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}. For example:
- (3,3,2,1,1) has reverse-weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8.
- (1,2,2,3) has reverse-weighted alternating sum -1*3 + 2*2 - 3*2 + 4*1 = -1.
EXAMPLE
Triangle begins:
1
1
1 1
1 2
2 0 1 2
2 1 1 1 1 1
3 1 0 3 0 1 1 1 1
3 2 0 3 1 2 0 1 0 1 2
5 1 0 3 1 2 2 2 1 1 0 1 0 1 2
5 3 0 4 2 2 0 3 2 1 3 0 0 1 0 1 1 1 1
Row n = 6 counts the following partitions:
k=3 k=4 k=6 k=8 k=9 k=10 k=11
--------------------------------------------------------------
(33) (222) . (6) . (21111) (51) (3111) (411)
(2211) (42)
(111111) (321)
MATHEMATICA
revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]], {k, 1, Length[y]}];
Table[Length[Select[IntegerPartitions[n], revaltwtsum[#]==k&]], {n, 0, 15}, {k, Floor[(n+1)/2], Ceiling[n*(n+1)/4]}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Jun 15 2023
STATUS
approved