login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363623
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-weighted alternating sum k (leading and trailing 0's omitted).
8
1, 1, 1, 1, 1, 2, 2, 0, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 0, 3, 0, 1, 1, 1, 1, 3, 2, 0, 3, 1, 2, 0, 1, 0, 1, 2, 5, 1, 0, 3, 1, 2, 2, 2, 1, 1, 0, 1, 0, 1, 2, 5, 3, 0, 4, 2, 2, 0, 3, 2, 1, 3, 0, 0, 1, 0, 1, 1, 1, 1, 7, 2, 0, 4, 1, 5, 2, 3, 1, 3, 0, 2, 3, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 1
OFFSET
0,6
COMMENTS
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}. For example:
- (3,3,2,1,1) has reverse-weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8.
- (1,2,2,3) has reverse-weighted alternating sum -1*3 + 2*2 - 3*2 + 4*1 = -1.
EXAMPLE
Triangle begins:
1
1
1 1
1 2
2 0 1 2
2 1 1 1 1 1
3 1 0 3 0 1 1 1 1
3 2 0 3 1 2 0 1 0 1 2
5 1 0 3 1 2 2 2 1 1 0 1 0 1 2
5 3 0 4 2 2 0 3 2 1 3 0 0 1 0 1 1 1 1
Row n = 6 counts the following partitions:
k=3 k=4 k=6 k=8 k=9 k=10 k=11
--------------------------------------------------------------
(33) (222) . (6) . (21111) (51) (3111) (411)
(2211) (42)
(111111) (321)
MATHEMATICA
revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]], {k, 1, Length[y]}];
Table[Length[Select[IntegerPartitions[n], revaltwtsum[#]==k&]], {n, 0, 15}, {k, Floor[(n+1)/2], Ceiling[n*(n+1)/4]}]
CROSSREFS
Row sums are A000041.
Column k = floor((n+1)/2) is A119620.
The unweighted version is A344612 aerated, reverse A103919.
The corresponding rank statistic is A363620, reverse A363619.
The reverse version is A363622.
A053632 counts compositions by weighted sum.
A264034 counts partitions by weighted sum, reverse A358194.
A316524 gives alternating sum of prime indices, reverse A344616.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.
Sequence in context: A343748 A029368 A108483 * A376630 A101565 A377404
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Jun 15 2023
STATUS
approved