OFFSET
1,4
COMMENTS
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.
Conjecture: A partition of n has weighted sum divisible by n iff its reverse has weighted sum divisible by n.
EXAMPLE
The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7).
The a(2) = 1 through a(7) = 12 partitions:
(11) (21) (22) (32) (33) (43)
(31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(2211) (421)
(21111) (511)
(111111) (2221)
(4111)
(22111)
(31111)
(211111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], !Divisible[Total[Accumulate[Reverse[#]]], n]&]], {n, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 28 2023
STATUS
approved