login
A362560
Number of integer partitions of n whose weighted sum is not divisible by n.
7
0, 1, 1, 4, 5, 8, 12, 19, 25, 38, 51, 70, 93, 124, 162, 217, 279, 360, 462, 601, 750, 955, 1203, 1502, 1881, 2336, 2892, 3596, 4407, 5416, 6623, 8083, 9830, 11943, 14471, 17488, 21059, 25317, 30376, 36424, 43489, 51906, 61789, 73498, 87186, 103253, 122098
OFFSET
1,4
COMMENTS
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.
Conjecture: A partition of n has weighted sum divisible by n iff its reverse has weighted sum divisible by n.
EXAMPLE
The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7).
The a(2) = 1 through a(7) = 12 partitions:
(11) (21) (22) (32) (33) (43)
(31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(2211) (421)
(21111) (511)
(111111) (2221)
(4111)
(22111)
(31111)
(211111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], !Divisible[Total[Accumulate[Reverse[#]]], n]&]], {n, 30}]
CROSSREFS
For median instead of mean we have A322439 aerated, complement A362558.
The complement is counted by A362559.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A264034 counts partitions by weighted sum.
A304818 = weighted sum of prime indices, row-sums of A359361.
A318283 = weighted sum of reversed prime indices, row-sums of A358136.
Sequence in context: A027975 A011980 A260163 * A061765 A242274 A297419
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 28 2023
STATUS
approved