login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362452
Gilbreath transform of {sigma(i)-i, i >= 1} (see sum of aliquot parts, A001065).
5
0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 62, 0, 12, 0, 3, 0, 2, 0, 25, 1
OFFSET
1,120
COMMENTS
See A362451 for further information.
The first 50000 terms of the present sequence suggest that the terms are usually 0's and 1's, except for occasional "geysers". See A362458, A362459.
[It would be nice to have plots of larger numbers of initial terms.]
LINKS
N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: Video, Slides, Updates. (Mentions this sequence.)
MAPLE
# To get M terms of the Gilbreath transform of s:
GT := proc(s, M) local G, u, i;
u := [seq(s(i), i=1..M)];
G:=[s(1)];
for i from 1 to M-1 do
u:=[seq(abs(u[i+1]-u[i]), i=1..nops(u)-1)];
G:=[op(G), u[1]]; od:
G;
end;
# For the present sequence:
aliq := proc(n) numtheory[sigma](n) - n; end;
GT(aliq, 150);
MATHEMATICA
A362452[nmax_]:=Module[{d=DivisorSigma[1, Range[nmax]]-Range[nmax]}, Join[{0}, Table[First[d=Abs[Differences[d]]], nmax-1]]]; A362452[200] (* Paolo Xausa, May 07 2023 *)
PROG
(PARI)
f(n) = sigma(n) - n
lista(nn) = my(v=apply(f, [1..nn]), list = List(), nb=nn); listput(list, v[1]); for (n=2, nn, nb--; my(w = vector(nb, k, abs(v[k+1]-v[k]))); listput(list, w[1]); v = w; ); Vec(list);
lista(200)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 03 2023
EXTENSIONS
More than the usual number of terms are displayed in order to go out beyond the long initial 0,1 subsequence.
STATUS
approved