|
|
A147667
|
|
Primes of the form 5^n - 4^n.
|
|
2
|
|
|
61, 1136791005963704961126617632861, 173472015290681763212224222187425603741981, 31861838222649045530727106406255616308752331078816472270207782250106896363274089867800367051529351065966102374800998198276889145001421
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All terms are odd, and if n is even, then 5^n - 4^n is divisible by 3. [Vincenzo Librandi, Nov 25 2010]
The next term (a(5)) has 156 digits. - Harvey P. Dale, May 14 2022
|
|
LINKS
|
Muniru A Asiru, Table of n, a(n) for n = 1..9
|
|
EXAMPLE
|
5^3 - 4^3 = 125 - 64 = 61.
|
|
MAPLE
|
select(isprime, [seq(5^n - 4^n, n=0..200)]); # Muniru A Asiru, Mar 04 2018
|
|
MATHEMATICA
|
lst={}; Do[p=5^n-4^n; If[PrimeQ[p], AppendTo[lst, p]], {n, 6!}]; lst
Select[Table[5^n-4^n, {n, 300}], PrimeQ] (* Harvey P. Dale, May 14 2022 *)
|
|
PROG
|
(GAP) Filtered(List([1..200], n->5^n - 4^n), IsPrime); # Muniru A Asiru, Mar 04 2018
|
|
CROSSREFS
|
Cf. A059802 (corresponding n).
Sequence in context: A087513 A176272 A173418 * A022084 A110823 A058913
Adjacent sequences: A147664 A147665 A147666 * A147668 A147669 A147670
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Nov 10 2008
|
|
STATUS
|
approved
|
|
|
|