login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Gilbreath transform of {sigma(i)-i, i >= 1} (see sum of aliquot parts, A001065).
5

%I #47 Sep 27 2023 15:04:18

%S 0,1,1,1,1,0,1,0,0,1,0,0,0,1,0,0,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,0,

%T 1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,1,1,0,1,1,

%U 1,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1,1,1,0,1,1,1,62,0,12,0,3,0,2,0,25,1

%N Gilbreath transform of {sigma(i)-i, i >= 1} (see sum of aliquot parts, A001065).

%C See A362451 for further information.

%C The first 50000 terms of the present sequence suggest that the terms are usually 0's and 1's, except for occasional "geysers". See A362458, A362459.

%C [It would be nice to have plots of larger numbers of initial terms.]

%H N. J. A. Sloane, <a href="/A362452/b362452.txt">Table of n, a(n) for n = 1..50000</a>

%H N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: <a href="https://vimeo.com/866583736?share=copy">Video</a>, <a href="http://neilsloane.com/doc/EMSep2023.pdf">Slides</a>, <a href="http://neilsloane.com/doc/EMSep2023.Updates.txt">Updates</a>. (Mentions this sequence.)

%H Paolo Xausa, <a href="/A362452/a362452.txt">Table of n, a(n) for n = 1..1000000</a>

%H Paolo Xausa, <a href="/A362452/a362452.png">Logarithmic scatterplot for n = 1..1000000</a>

%H <a href="/index/Ge#Gilbreath">Index entries for sequences related to Gilbreath conjecture and transform</a>

%p # To get M terms of the Gilbreath transform of s:

%p GT := proc(s,M) local G,u,i;

%p u := [seq(s(i),i=1..M)];

%p G:=[s(1)];

%p for i from 1 to M-1 do

%p u:=[seq(abs(u[i+1]-u[i]),i=1..nops(u)-1)];

%p G:=[op(G),u[1]]; od:

%p G;

%p end;

%p # For the present sequence:

%p aliq := proc(n) numtheory[sigma](n) - n; end;

%p GT(aliq,150);

%t A362452[nmax_]:=Module[{d=DivisorSigma[1,Range[nmax]]-Range[nmax]},Join[{0},Table[First[d=Abs[Differences[d]]],nmax-1]]];A362452[200] (* _Paolo Xausa_, May 07 2023 *)

%o (PARI)

%o f(n) = sigma(n) - n

%o lista(nn) = my(v=apply(f, [1..nn]), list = List(), nb=nn); listput(list, v[1]); for (n=2, nn, nb--; my(w = vector(nb, k, abs(v[k+1]-v[k]))); listput(list, w[1]); v = w; ); Vec(list);

%o lista(200)

%Y Cf. A000005, A000040, A000203, A001065, A036262, A361897, A362450, A362451, A362458, A362459.

%K nonn

%O 1,120

%A _N. J. A. Sloane_, May 03 2023

%E More than the usual number of terms are displayed in order to go out beyond the long initial 0,1 subsequence.