login
A361897
Leading terms of the rows of the array in A362450; or, Gilbreath transform of tau (A000005).
8
1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0
OFFSET
1,1
COMMENTS
Conjecture: All terms are either 0 or 1. Verified to a(10^7).
Inspired by Gilbreath's conjecture, A036262.
Using the terminology of A362451, this is the Gilbreath transform of tau (A000005). - N. J. A. Sloane, May 05 2023
LINKS
N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: Video, Slides, Updates. (Mentions this sequence.)
EXAMPLE
Table begins (conjecture is leading terms are 0 or 1):
1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 ...
1 0 1 1 2 2 2 1 1 2 4 4 2 0 1 3 4 4 4 2 0 2 6 5 1 0 2 4 6 6 4 2 0 0 5 7 2 0 ...
1 1 0 1 0 0 1 0 1 2 0 2 2 1 2 1 0 0 2 2 2 4 1 4 1 2 2 2 0 2 2 2 0 5 2 5 2 4 ...
0 1 1 1 0 1 1 1 1 2 2 0 1 1 1 1 0 2 0 0 2 3 3 3 1 0 0 2 2 0 0 2 5 3 3 3 2 ...
1 0 0 1 1 0 0 0 1 0 2 1 0 0 0 1 2 2 0 2 1 0 0 2 1 0 2 0 2 0 2 3 2 0 0 1 0 ...
1 0 1 0 1 0 0 1 1 2 1 1 0 0 1 1 0 2 2 1 1 0 2 1 1 2 2 2 2 2 1 1 2 0 1 1 ...
1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 2 0 1 0 1 2 1 0 1 0 0 0 0 1 0 1 2 1 0 1 ...
0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 ...
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 ...
0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 ...
0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 ...
1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 ...
etc.
...
The first two rows are A000005, abs(A051950). The full table, read by antidiagonals, is A362450.
MAPLE
N:= 200: # for a(1) to a(N)
L:= [seq(numtheory:-tau(n), n=1..N)]:
for i from 1 to 105 do
R[i]:= L[1];
L:= map(abs, L[2..-1]-L[1..-2])
od:
seq(R[i], i=1..M); # Robert Israel, May 07 2023
MATHEMATICA
a[n_] := NestWhile[ Abs@ Differences@ # &, Table[ DivisorSigma[0, m], {m, n}], Length[##] > 1 &][[1]]; Array[a, 105]
(* or *)
mx = 105; lst = {}; k = 0; d = Array[ DivisorSigma[0, #] &, mx]; While[k < mx, AppendTo[lst, d[[1]]]; d = Abs@ Differences@ d; k++]; lst
(* or *)
A361897[nmax_]:=Module[{d=DivisorSigma[0, Range[nmax]]}, Join[{1}, Table[First[d=Abs[Differences[d]]], nmax-1]]]; A361897[200] (* Paolo Xausa, May 07 2023 *)
PROG
(PARI) lista(nn) = my(v=apply(numdiv, [1..nn]), list = List(), nb=nn); listput(list, v[1]); for (n=2, nn, nb--; my(w = vector(nb, k, abs(v[k+1]-v[k]))); listput(list, w[1]); v = w; ); Vec(list);
lista(200) \\ Michel Marcus, Mar 29 2023
CROSSREFS
See also A001659 (if don't use absolute values).
Sequence in context: A265186 A248392 A188318 * A189206 A323152 A192280
KEYWORD
easy,nonn
AUTHOR
Wayman Eduardo Luy and Robert G. Wilson v, Mar 28 2023
EXTENSIONS
Edited by N. J. A. Sloane, Apr 30 2023
STATUS
approved