login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A359411 a(n) is the number of divisors of n that are both infinitary and exponential. 8
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
First differs from A318672 and A325989 at n = 32.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both an infinitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e and the bitwise AND of e and k is equal to k.
The least term that is higher than 2 is a(216) = 4.
The position of the first appearance of a prime p in this sequence is 2^A359081(p), if A359081(p) > -1. E.g., 2^39 = 549755813888 for p = 3, 2^175 = 4.789...*10^52 for p = 5, and 2^1275 = 6.504...*10^383 for p = 7.
This sequence is unbounded since A246600 is unbounded (see A359082).
LINKS
FORMULA
Multiplicative with a(p^e) = A246600(e).
a(n) = 1 if and only if n is in A138302.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} A246600(k)/p^k) = 1.135514937... .
EXAMPLE
a(8) = 2 since 8 has 2 divisors that are both infinitary and exponential: 2 and 8.
MATHEMATICA
s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(n) = sumdiv(n, d, bitand(d, n)==d);
a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i, 2])); }
(Python)
from math import prod
from sympy import divisors, factorint
def A359411(n): return prod(sum(1 for d in divisors(e, generator=True) if e|d == e) for e in factorint(n).values()) # Chai Wah Wu, Sep 01 2023
CROSSREFS
Sequence in context: A318672 A359910 A368168 * A367516 A368979 A325989
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, Dec 30 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 09:04 EDT 2024. Contains 371799 sequences. (Running on oeis4.)