login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246600
Number of divisors d of n with property that the binary representation of d can be obtained from the binary representation of n by changing any number of 1's to 0's.
13
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 2, 6, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 4, 2
OFFSET
1,3
COMMENTS
Equivalently, the number of divisors d of n such that the bitwise OR of n and d is equal to n. - Chai Wah Wu, Sep 06 2014
Equivalently, the number of divisors d of n such that the bitwise AND of n and d is equal to d. - Amiram Eldar, Dec 15 2022
The sums of the first 10^k terms for k = 1, 2, ..., are 16, 224, 2580, 26920, 273407, 2745100, 27440305, 274127749, 2738936912, 27373288534, 273631055291, 2735755647065, ... . Conjecture: The asymptotic mean of this sequence is 1 + Sum_{k>=1} 1/(k*2^A000120(k)) = 2.7351180693... . - Amiram Eldar, Apr 07 2023
LINKS
FORMULA
a(2^i) = 1.
a(odd prime) = 2.
a(n) <= 2^wt(n)-1, where wt(n) = A000120(n).
a(n) = Sum_{d|n} (binomial(n,d) mod 2). - Ridouane Oudra, May 03 2019
From Amiram Eldar, Dec 15 2022: (Start)
a(2*n) = a(n), and therefore a(m*2^k) = a(m) for m odd and k>=0.
a(2^n-1) = A000005(2^n-1) = A046801(n). (End)
EXAMPLE
12 = 1100_2; only the divisors 4 = 0100_2 and 12 = 1100_2 satisfy the condition, so(12)=2.
15 = 1111_2; all divisors 1,3,5,15 satisfy the condition, so a(15)=4.
MAPLE
A246600:=proc(n)
local a, d, s, t, i, sw;
a:=0;
s:=convert(n, base, 2);
for d in numtheory[divisors](n) do
sw:= false;
t:=convert(d, base, 2);
for i from 1 to nops(t) do
if t[i]>s[i] then
sw:= true;
fi;
od:
if not sw then
a:=a+1;
fi;
od;
a;
end;
seq(A246600(n), n=1..100);
MATHEMATICA
a[n_] := DivisorSum[n, Boole[BitOr[#, n] == n]&]; Array[a, 100] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *)
PROG
(Python)
from sympy import divisors
def A246600(n):
return sum(1 for d in divisors(n) if n|d == n)
# Chai Wah Wu, Sep 06 2014
(PARI) a(n)=sumdiv(n, d, bitor(d, n)==n) \\ Charles R Greathouse IV, Sep 29 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Sep 06 2014
STATUS
approved