login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092505
a(n) = A002430(n) / A046990(n).
3
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4
OFFSET
1,3
LINKS
FORMULA
A007814(a(n)) = A130654(n). - Antti Karttunen, Jan 12 2019
PROG
(PARI) a(n)=if(n<1, 0, numerator(polcoeff(Ser(tan(x)), 2*n-1))/numerator(polcoeff(Ser(log(1/cos(x))), 2*n)))
(PARI)
\\ Quite wasteful, especially as there is the same bernfrac(2*n) in both. Should reduce to a much simpler form?
A002430(n) = numerator(((-1)^(n-1)) * 2^(2*n) * (2^(2*n)-1)*bernfrac(2*n)/((2*n)!)); \\ After Johannes W. Meijer's May 24 2009 formula in A002430.
A046990(n) = numerator(((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!); \\ From A046990
A092505(n) = (A002430(n) / A046990(n)); \\ Antti Karttunen, Jan 12 2019
(Magma) [Numerator((-1)^(n - 1)*2^(2*n)*(2^(2*n) - 1)*Bernoulli(2*n) / Factorial(2*n)) / (Numerator(((-4)^n-(-16)^n) * Bernoulli(2*n) / 2 / n / Factorial(2*n))): n in [1..100]]; // Vincenzo Librandi, Jan 13 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Apr 05 2004
STATUS
approved