Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 26 2024 05:02:43
%S 1,1,2,1,2,2,2,1,2,2,2,2,2,4,2,1,2,2,2,2,2,4,2,2,2,4,2,4,2,4,2,1,2,2,
%T 2,2,2,4,2,2,2,4,2,4,2,4,2,2,2,4,2,4,2,4,2,4,2,4,2,8,2,4,2,1,2,2,2,2,
%U 2,4,2,2,2,4,2,4,2,4,2,2,2,4,2,4,2,4,2,4,2,4,2,8,2,4,2,2,2,4,2,4,2,4
%N a(n) = A002430(n) / A046990(n).
%H Antti Karttunen, <a href="/A092505/b092505.txt">Table of n, a(n) for n = 1..16385</a>
%F A007814(a(n)) = A130654(n). - _Antti Karttunen_, Jan 12 2019
%o (PARI) a(n)=if(n<1,0,numerator(polcoeff(Ser(tan(x)),2*n-1))/numerator(polcoeff(Ser(log(1/cos(x))),2*n)))
%o (PARI)
%o \\ Quite wasteful, especially as there is the same bernfrac(2*n) in both. Should reduce to a much simpler form?
%o A002430(n) = numerator(((-1)^(n-1)) * 2^(2*n) * (2^(2*n)-1)*bernfrac(2*n)/((2*n)!)); \\ After _Johannes W. Meijer_'s May 24 2009 formula in A002430.
%o A046990(n) = numerator(((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!); \\ From A046990
%o A092505(n) = (A002430(n) / A046990(n)); \\ _Antti Karttunen_, Jan 12 2019
%o (Magma) [Numerator((-1)^(n - 1)*2^(2*n)*(2^(2*n) - 1)*Bernoulli(2*n) / Factorial(2*n)) / (Numerator(((-4)^n-(-16)^n) * Bernoulli(2*n) / 2 / n / Factorial(2*n))): n in [1..100]]; // _Vincenzo Librandi_, Jan 13 2019
%Y Cf. A002430, A046990, A130654.
%K nonn
%O 1,3
%A _Ralf Stephan_, Apr 05 2004