login
A353898
a(n) is the number of divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).
8
1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
OFFSET
1,2
COMMENTS
First differs from A049599 and A282446 at n=32.
LINKS
FORMULA
Multiplicative with a(p^e) = floor(log_2(e)) + 2.
a(n) > 1 for n > 1 and a(n) = 2 if and only if n is a prime.
a(n) = A000005(n) if and only if n is cubefree (A004709).
EXAMPLE
The divisors of 8 are 1, 2 = 2^1, 4 = 2^2 and 8 = 2^3. 3 of these divisors, 1, 2 and 4, are in A138302. Therefore, a(8) = 3.
MATHEMATICA
f[p_, e_] := Floor[Log2[e]] + 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, May 10 2022
STATUS
approved