login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353900
a(n) is the sum of divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).
4
1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 13, 56, 30, 72, 32, 23, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 39, 72, 56, 80, 90, 60, 168, 62, 96, 104, 23, 84, 144
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = 1 + Sum_{k=0..floor(log_2(e))} p^(2^k).
a(n) = A000203(n) if and only if n is cubefree (A004709).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1-1/p)*(1 + Sum_{k>=1} (Sum_{j=0..floor(log_2(k))} p^(2^j)/p^(2*k)))) = 0.7176001667... . - Amiram Eldar, Nov 19 2022
MATHEMATICA
f[p_, e_] := 1 + Sum[p^(2^k), {k, 0, Floor[Log2[e]]}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 0, logint(f[i, 2], 2), f[i, 1]^(2^k))); } \\ Amiram Eldar, Nov 19 2022
CROSSREFS
Similar sequences: A034448, A048146, A051377, A188999.
Sequence in context: A284341 A377520 A073183 * A366903 A049418 A333926
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, May 10 2022
STATUS
approved