login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353897
a(n) is the largest divisor of n whose exponents in its prime factorization are all powers of 2 (A138302).
11
1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 16, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^(2^floor(log_2(e))).
a(n) = n if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c*n^2, where c = 0.4616988732... = (1/2) * Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^(f(k-1)+1))/p^(2*k)), f(k) = 2^floor(log_2(k)) and f(0) = 0.
EXAMPLE
a(27) = 9 since 9 = 3^2 is the largest divisor of 27 with an exponent in its prime factorization, 2, that is a power of 2.
MATHEMATICA
f[p_, e_] := p^(2^Floor[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
CROSSREFS
Similar sequences: A000265, A007947, A008834, A055071, A350390.
Sequence in context: A007948 A377518 A355261 * A366905 A348262 A038389
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, May 10 2022
STATUS
approved