login
A353428
Number of integer compositions of n with all parts and all run-lengths > 2.
6
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 2, 4, 0, 0, 8, 3, 0, 10, 4, 4, 15, 4, 8, 24, 7, 8, 42, 16, 10, 59, 31, 27, 87, 37, 52, 149, 62, 66, 233, 121, 111, 342, 207, 204, 531, 308, 351, 864, 487, 536, 1373, 864, 865, 2057, 1440, 1509, 3232
OFFSET
0,13
LINKS
EXAMPLE
The a(n) compositions for selected n:
n=16: n=18: n=20: n=21: n=24:
----------------------------------------------------
(4444) (666) (5555) (777) (888)
(333333) (44444) (333444) (6666)
(444333) (333555)
(3333333) (444444)
(555333)
(3333444)
(4443333)
(33333333)
MAPLE
b:= proc(n, h) option remember; `if`(n=0, 1, add(
`if`(i=h, 0, add(b(n-i*j, i), j=3..n/i)), i=3..n/3))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..80); # Alois P. Heinz, May 18 2022
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !MemberQ[#, 1|2]&&!MemberQ[Length/@Split[#], 1|2]&]], {n, 0, 15}]
CROSSREFS
Allowing any multiplicities gives A078012, partitions A008483.
The version for no (instead of all) parts or run-lengths > 2 is A137200.
Allowing any parts gives A353400, partitions A100405.
The version for partitions is A353501, ranked by A353502.
The version for > 1 instead of > 2 is A353508, partitions A339222.
A003242 counts anti-run compositions, ranked by A333489.
A008466 counts compositions with some part > 2.
A011782 counts compositions.
A114901 counts compositions with no runs of length 1, ranked by A353427.
A128695 counts compositions with no run-lengths > 2.
A261983 counts non-anti-run compositions.
A335464 counts compositions with a run-length > 2.
Sequence in context: A303907 A290870 A353501 * A244738 A331195 A215462
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2022
EXTENSIONS
a(26)-a(66) from Alois P. Heinz, May 17 2022
STATUS
approved