OFFSET
0,7
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..5000 from Vaclav Kotesovec)
FORMULA
G.f.: Product_{k>0} (1+x^(3*k)/(1-x^k)). More generally, g.f. for number of partitions of n where every part appears more than m times is Product_{k>0} (1+x^((m+1)*k)/(1-x^k)).
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869049971822566... . - Vaclav Kotesovec, Jan 05 2016
EXAMPLE
a(6)=2 because we have [2,2,2] and [1,1,1,1,1,1].
MAPLE
G:=product((1+x^(3*k)/(1-x^k)), k=1..30): Gser:=series(G, x=0, 80): seq(coeff(Gser, x, n), n=0..70); # Emeric Deutsch, Aug 06 2005
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=[0, $3..iquo(n, i)])))
end:
a:= n-> b(n$2):
seq(a(n), n=0..70); # Alois P. Heinz, Aug 20 2019
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(3*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jan 11 2005
EXTENSIONS
More terms from Emeric Deutsch, Aug 06 2005
a(0)=1 prepended by Alois P. Heinz, Aug 20 2019
STATUS
approved